Show simple item record

Exploring the effect of current sheet thickness on the high‐frequency Fourier spectrum breakpoint of the solar wind

dc.contributor.authorBorovsky, Joseph E.
dc.contributor.authorPodesta, John J.
dc.date.accessioned2018-06-11T18:00:35Z
dc.date.available2018-06-11T18:00:35Z
dc.date.issued2015-11
dc.identifier.citationBorovsky, Joseph E.; Podesta, John J. (2015). "Exploring the effect of current sheet thickness on the high‐frequency Fourier spectrum breakpoint of the solar wind." Journal of Geophysical Research: Space Physics 120(11): 9256-9268.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/144299
dc.description.abstractThe magnetic power spectrum of the solar wind at 1 AU exhibits a breakpoint at a frequency of about 0.1–1 Hz, with the spectrum being steeper above the breakpoint than below the breakpoint. Because magnetic discontinuities contain much of the Fourier power in the solar wind, it is suspected that current sheet thicknesses (i.e., discontinuity thicknesses) may play a role in determining the frequency of this breakpoint. Using time series measurements of the solar wind magnetic field from the Wind spacecraft, the effect of current sheet thicknesses on the breakpoint is investigated by time stretching the solar wind time series at the locations of current sheets, effectively thickening the current sheets in the time series. This localized time stretching significantly affects the magnetic power spectral density of the solar wind in the vicinity of the high‐frequency breakpoint: a substantial fraction of the Fourier power at the breakpoint frequency is contained in current sheets that occupy a small fraction of the spatial volume of the solar wind. It is concluded that current sheet thickness appears to play a role in determining the frequency fB of the high‐frequency breakpoint of the magnetic power spectrum of the solar wind. This analysis of solar wind data is aided by comparisons with power spectra generated from artificial time series.Key PointsCurrent‐sheet thicknesses affect the high‐frequency breakpoint frequency of the solar windSolar‐wind current sheets contain substantial magnetic Fourier powerThere are outstanding questions about the solar‐wind current sheet origins and physics
dc.publisherWiley Periodicals, Inc.
dc.publisherHoward Sams
dc.subject.otherdiscontinuities
dc.subject.othersolar wind
dc.subject.otherFourier spectra
dc.subject.othercurrent sheets
dc.titleExploring the effect of current sheet thickness on the high‐frequency Fourier spectrum breakpoint of the solar wind
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144299/1/jgra52192_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144299/2/jgra52192.pdf
dc.identifier.doi10.1002/2015JA021622
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSasunov, Y. L., M. L. Khodachenko, I. I. Alexeev, E. S. Belenkaya, V. S. Semenov, I. V. Kubyshkin, and O. V. Mingalev ( 2015 ), Investigation of scaling properties of a thin current sheet by means of particle trajectories study, J. Geophys. Res. Space Physics, 120, 1633 – 1645, doi: 10.1002/2014JA020486.
dc.identifier.citedreferenceSingh, N., C. Deverapalli, and G. Khazanov ( 2006 ), Electrodynamics in a very thin current sheet leading to magnetic reconnection, Nonlinear. Process. Geophys., 13, 509.
dc.identifier.citedreferenceSiscoe, G. L., L. Davis, P. J. Coleman, E. J. Smith, and D. E. Jones ( 1968 ), Power spectra and discontinuities of the interplanetary magnetic field: Mariner 4, J. Geophys. Res., 73, 61 – 82, doi: 10.1029/JA073i001p00061.
dc.identifier.citedreferenceStawicki, O., S. P. Gary, and H. Li ( 2001 ), Solar wind magnetic fluctuation spectra: Dispersion and damping, J. Geophys. Res., 106, 8273 – 8281, doi: 10.1029/2000JA000446.
dc.identifier.citedreferenceStefant, R. J. ( 1970 ), Alfven wave damping from finite gyroradius coupling to the ion acoustic mode, Phys. Fluids, 13, 440.
dc.identifier.citedreferenceTenBarge, J. M., J. J. Podesta, K. G. Klein, and G. G. Howes ( 2012 ), Interpreting magnetic variance anisotropy measurements in the solar wind, Astrophys. J., 735, 107.
dc.identifier.citedreferenceTennekes, H., and J. L. Lumley ( 1972 ), A First Course in Turbulence, MIT Press, Cambridge.
dc.identifier.citedreferenceThomson, D. J. ( 1982 ), Spectrum estimation and harmonic analysis, Proc. IEEE, 70, 1055.
dc.identifier.citedreferenceTsurutani, B. T., and C. M. Ho ( 1999 ), A review of discontinuities and Alfven waves in interplanetary space: ULYSSES results, Rev. Geophys., 37, 517 – 541, doi: 10.1029/1999RG900010.
dc.identifier.citedreferenceTu, C.‐Y., and E. Marsch ( 1995 ), MHD structures, waves and turbulence in the solar wind, Space Sci. Rev., 73, 1.
dc.identifier.citedreferenceTurner, J. M., and G. L. Siscoe ( 1971 ), Orientations of ‘rotational’ and ‘tangential’ discontinuities in the solar wind, J. Geophys. Res., 76, 1816, doi: 10.1029/JA076i007p01816.
dc.identifier.citedreferenceVasquez, B. J., and J. V. Hollweg ( 1999 ), Formation of pressure‐balanced structures and fast waves from nonlinear Alfven waves, J. Geophys. Res., 104, 4681, doi: 10.1029/1998JA900090.
dc.identifier.citedreferenceVasquez, B. J., V. I. Abramenko, D. K. Haggerty, and C. W. Smith ( 2007 ), Numerous small magnetic field discontinuities of Bartels rotation 2286 and the potential role of Alfvenic turbulence, J. Geophys. Res., 112, A11102, doi: 10.1029/2007JA012504.
dc.identifier.citedreferenceVeltri, P. ( 1999 ), MHD turbulence in the solar wind: Self‐similarity, intermittency and coherent structures, Plasma Phys. Control. Fusion, 41, A787.
dc.identifier.citedreferenceWang, X. Y., Y. Lin, L. Chen, and Z. Lin ( 2008 ), Particle simulation of current sheet instabilities under finite guide field, Phys. Plasmas, 15, 072103.
dc.identifier.citedreferenceWeimer, D. R., D. M. Ober, N. C. Maynard, W. J. Burke, M. R. Collier, D. J. McComas, N. F. Ness, and C. W. Smith ( 2002 ), Variable time delays in the propagation of the interplanetary magnetic field, J. Geophys. Res., 107, 1210, doi: 10.1029/2001JA009102.
dc.identifier.citedreferenceWu, C. S., Y. M. Zhau, S. T. Tsai, S. C. Guo, D. Winske, and K. Papadopoulos ( 1983 ), A kinetic cross‐field streaming instability, Phys. Fluids, 26, 1259.
dc.identifier.citedreferenceWuttke, J. ( 2012 ), Laplace‐Fourier transform of the stretched exponential function: Analytic error bounds, double exponential transform, and open‐source implementation “libkww”, Algorithms, 5, 604.
dc.identifier.citedreferenceXu, F., and J. E. Borovsky ( 2015 ), A new 4‐plasma categorization scheme for the solar wind, J. Geophys. Res. Space Physics, 120, 70 – 100, doi: 10.1002/2014JA020412.
dc.identifier.citedreferenceYin, L., and D. Winske ( 2002 ), Simulation of current sheet thinning and reconnection, J. Geophys. Res., 107 ( A12 ), 1485, doi: 10.1029/2002JA009507.
dc.identifier.citedreferenceZhdankin, V., S. Boldyrev, J. Mason, and J. C. Perez ( 2012 ), Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind, Phys. Rev. Lett., 108, 175004.
dc.identifier.citedreferenceDaughton, W. ( 2003 ), Electromagnetic properties of the lower‐hybrid drift instability in a thin current sheet, Phys. Plasmas, 10, 3103.
dc.identifier.citedreferenceDishon, M., G. H. Weill, and J. T. Bender ( 1985 ), Stable law densities and linear relaxation phenomena, J. Res. Nat. Bureau Stand., 90, 27.
dc.identifier.citedreferenceFejer, J. A., and J. R. Kan ( 1969 ), A guiding centre Vlasov equation and its application to Alfven waves, J. Plasma Phys., 3, 331 – 351.
dc.identifier.citedreferenceFlomenbom, O., et al. ( 2005 ), Stretched exponential decay and correlations in the catalytic activity of fluctuating single lipase molecules, Proc. Natl. Acad. Sci. U.S.A., 102, 2368 – 2372.
dc.identifier.citedreferenceFranz, M., D. Burgess, and T. S. Horbury ( 2000 ), Magnetic field depressions in the solar wind, J. Geophys. Res., 105, 12,725 – 12,732, doi: 10.1029/2000JA900026.
dc.identifier.citedreferenceBarkhatov, N. A., A. V. Korolev, G. N. Zastenker, M. O. Ryazantseva, and P. A. Dalin ( 2003 ), MHD simulations of the dynamics of sharp disturbances of the interplanetary medium and comparison with spacecraft observations, Cosmic Res., 41, 529 – 538.
dc.identifier.citedreferenceBehannon, K. W. ( 1978 ), Heliocentric distance dependence of the interplanetary magnetic field, Rev. Geophys., 16, 125 – 145, doi: 10.1029/RG016i001p00125.
dc.identifier.citedreferenceBelcher, J. W., and L. Davis ( 1971 ), Large‐amplitude Alfven waves in the interplanetary medium, 2, J. Geophys. Res., 76, 3534 – 3563, doi: 10.1029/JA076i016p03534.
dc.identifier.citedreferenceBirn, J., and M. Hesse ( 2014 ), Forced reconnection in the near magnetotail: Onset and energy conversion in PIC and MHD simulations, J. Geophys. Res. Space Physics, 119, 290 – 309, doi: 10.1002/2013JA019354.
dc.identifier.citedreferenceBorovsky, J. E. ( 2008 ), The flux‐tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?, J. Geophys. Res., 113, A08110, doi: 10.1029/2007JA012684.
dc.identifier.citedreferenceBorovsky, J. E. ( 2010 ), On the contribution of strong discontinuities to the power spectrum of the solar wind, Phys. Rev. Lett., 105, 111102.
dc.identifier.citedreferenceBorovsky, J. E. ( 2012a ), Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU, J. Geophys. Res., 117, A06107, doi: 10.1029/2012JA017525.
dc.identifier.citedreferenceBorovsky, J. E. ( 2012b ), The effect of sudden wind shear on the Earth’s magnetosphere: Statistics of wind‐shear events and CCMC simulations of magnetotail disconnections, J. Geophys. Res., 117, A06224, doi: 10.1029/2012JA017623.
dc.identifier.citedreferenceBorovsky, J. E. ( 2012c ), The velocity and magnetic‐field fluctuations of the solar wind at 1 AU: Statistical analysis of Fourier spectra and correlations with plasma properties, J. Geophys. Res., 117, A05104, doi: 10.1029/2011JA017499.
dc.identifier.citedreferenceBorovsky, J. E., and J. T. Steinberg ( 2014 ), No evidence for the localized heating of solar‐wind protons at intense velocity shear zones, J. Geophys. Res. Space Physics, 119, 1455, doi: 10.1002/2013JA019746.
dc.identifier.citedreferenceBourouaine, S., O. Alexandrova, E. Marsch, and M. Maksimovic ( 2012 ), On spectral breaks in the power spectra of magnetic fluctuations in fast solar wind between 0.3 and 0.9 AU, Astrophys. J., 749, 102.
dc.identifier.citedreferenceBruno, R., and L. Trenchi ( 2014 ), Radial dependence of the frequency break between fluid and kinetic scales in the solar wind fluctuations, Astrophys. J. Lett., 787, L24.
dc.identifier.citedreferenceBruno, R., and V. Carbone ( 2013 ), The solar wind as a turbulence laboratory, Living Rev. Solar Phys. 10, 2. [Available at http://www.livingreview.org/lrsp‐2013‐2.]
dc.identifier.citedreferenceBruno, R., V. Carbone, P. Veltri, E. Pietropaolo, and B. Bavassano ( 2001 ), Identifying intermittency events in the solar wind, Planet. Space Sci., 49, 1201 – 1210.
dc.identifier.citedreferenceBurlaga, L. F. ( 1969 ), Directional discontinuities in the interplanetary magnetic field, Solar Phys., 7, 54 – 71.
dc.identifier.citedreferenceBurlaga, L. F., and N. F. Ness ( 1969 ), Tangential discontinuities in the solar wind, Solar Phys., 9, 467.
dc.identifier.citedreferenceCardona, M., R. V. Chamberlin, and W. Marx ( 2007 ), The history of the stretched exponential function, Ann. Phys., 16, 842.
dc.identifier.citedreferenceChen, C. H. K., L. Leung, S. Boldyrev, B. A. Maruca, and S. D. Bale ( 2014 ), Ion‐scale spectral break of solar wind turbulence at high and low beta, Geophys. Res. Lett., 41, 8081 – 8088, doi: 10.1002/2014GL062009.
dc.identifier.citedreferenceDalin, P. A., G. N. Zastenker, K. I. Paularena, and J. D. Richardson ( 2002 ), A survey of large, rapid solar wind dynamic pressure changes observed by Interball‐1 and IMP 8, Ann. Geophys., 20, 293 – 299.
dc.identifier.citedreferenceDaughton, W. ( 1998 ), Kinetic theory of the drift kink instability in a current sheet, J. Geophys. Res., 103, 29,429 – 29,443, doi: 10.1029/1998JA900028.
dc.identifier.citedreferenceGary, S. P., and J. E. Borovsky ( 2004 ), Alfven‐cyclotron fluctuations: Linear Vlasov theory, J. Geophys. Res., 109, A06105, doi: 10.1029/2004JA010399.
dc.identifier.citedreferenceGary, S. P., and J. E. Borovsky ( 2008 ), Damping of long‐wavelength kinetic Alfven fluctuations: Linear theory, J. Geophys. Res., 113, A12104, doi: 10.1029/2008JA013565.
dc.identifier.citedreferenceGoldstein, M. L., and D. A. Roberts ( 1999 ), Magnetohydrodynamic turbulence in the solar wind, Phys. Plasmas, 6, 4154.
dc.identifier.citedreferenceGoldstein, M. L., D. A. Roberts, and W. H. Matthaeus ( 1995 ), Magnetohydrodynamic turbulence in the solar wind, Ann. Rev. Astron. Astrophys., 33, 283.
dc.identifier.citedreferenceGoldstein, M. L., et al. ( 2015 ), Multipoint observations of plasma phenomena made in space by Cluster, J. Plasma Phys., 81, 325810301.
dc.identifier.citedreferenceGreco, A., W. H. Matthaeus, S. Servidio, P. Chuychai, and P. Dmitruk ( 2009 ), Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence, Astrophys. J., 691, L111.
dc.identifier.citedreferenceHoriuchi, R., and T. Sato ( 1999 ), Three‐dimensional particle simulation of plasma instabilities and collisionless reconnection in a current sheet, Phys. Plasmas, 6, 4565.
dc.identifier.citedreferenceHowes, G. G., S. C. Cowley, W. Dorland, G. W. Hammett, E. Quataert, and A. A. Schekochihin ( 2008 ), A model of turbulence in magnetized plasmas: Implications for the dissipation range in the solar wind, J. Geophys. Res., 113, A05103, doi: 10.1029/2007JA012665.
dc.identifier.citedreferenceHuang, F. Y., G. Chen, Z. Shi, H. Hu, J. Z. Peng, and M. Y. Yu ( 2009 ), Lower‐hybrid drift instability in a thin current sheet with κ velocity distribution, Phys. Plasmas, 16, 042107.
dc.identifier.citedreferenceInternational Telephone and Telegraph Corporation ( 1979 ), Reference Data for Radio Engineers, sect. 44‐5, Howard Sams, Indianapolis.
dc.identifier.citedreferenceKing, J. H., and N. E. Papitashvili ( 2005 ), Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, doi: 10.1029/2004JA010649.
dc.identifier.citedreferenceLaherrere, J., and D. Sornette ( 1998 ), Stretched exponential distributions in nature and economy: “Fat tails” with characteristic scales, Eur. Phys. J. B, 2, 525 – 539.
dc.identifier.citedreferenceLapenta, G., J. U. Brackbill, and W. S. Daughton ( 2003 ), The unexpected role of the lower hybrid drift instability in magnetic reconnection in three dimensions, Phys. Plasmas, 10, 1577.
dc.identifier.citedreferenceLeamon, R. J., C. W. Smith, N. F. Ness, W. H. Matthaeus, and H. K. Wong ( 1998 ), Observational constraints on the dynamics of the interplanetary magnetic field dissipation range, J. Geophys. Res., 103, 4775 – 4787, doi: 10.1029/97JA03394.
dc.identifier.citedreferenceLeamon, R. J., C. W. Smith, N. F. Ness, and H. K. Wong ( 1999 ), Dissipation range dynamics: Kinetic Alfven waves and the importance of β e, J. Geophys. Res., 104, 22,331 – 22,344, doi: 10.1029/1999JA900158.
dc.identifier.citedreferenceLeamon, R. J., W. H. Matthaeus, C. W. Smith, G. P. Zank, D. J. Mullan, and S. Oughton ( 2000 ), MHD‐driven kinetic dissipation in the solar wind and corona, Astrophys. J., 537, 1054.
dc.identifier.citedreferenceLepping, R. P., et al. ( 1995 ), The WIND magnetic field investigation, Space Sci. Rev., 71, 207.
dc.identifier.citedreferenceLi, G. ( 2008 ), Identifying currentsheet‐like structures in the solar wind, Astrophys. J., 672, L65 – L68.
dc.identifier.citedreferenceLi, G., B. Miao, Q. Hu, and G. Qin ( 2011 ), Effect of current sheets on the solar wind magnetic field power spectrum from the Ulysses observation: From Kraichnan to Kolmogorov scaling, Phys. Rev. Lett., 106, 125001.
dc.identifier.citedreferenceLukacs, K., and G. Erdos ( 2013 ), Angular distribution of discontinuity normal of the interplanetary magnetic field, Astron. Nachr., 334, 1055 – 1058.
dc.identifier.citedreferenceMalaspina, D. M., and J. T. Gosling ( 2012 ), Two spacecraft observations of magnetic discontinuities in the solar wind with STEREO, J. Geophys. Res., 117, A04109, doi: 10.1029/2011JA017375.
dc.identifier.citedreferenceMangeney, A., C. Salem, P. L. Veltri, and B. Cecconi ( 2001 ), Intermittency in the solar wind turbulence and the Haar wavelet transform, ESA Spec. Publ. ESA, SP‐492, 53.
dc.identifier.citedreferenceMarkovskii, S. A., B. J. Vasquez, and C. W. Smith ( 2008 ), Statistical analysis of the high‐frequency spectral break of the solar wind turbulence at 1 AU, Astrophys. J., 675, 1576.
dc.identifier.citedreferenceMontroll, E. W., and J. T. Bender ( 1984 ), On Levy (or stable) distribution and the Williams‐Watts model of dielectric relaxation, J. Stat. Phys., 34, 129 – 162.
dc.identifier.citedreferenceNeugebauer, M. ( 1985 ), Alignment of velocity and field changes across tangential discontinuities in the solar wind, J. Geophys. Res., 90, 6627 – 6630, doi: 10.1029/JA090iA07p06627.
dc.identifier.citedreferenceNeugebauer, M. ( 2006 ), Comment on the abundances of rotational and tangential discontinuities in the solar wind, J. Geophys. Res., 111, A04103, doi: 10.1029/2005JA011497.
dc.identifier.citedreferenceNeugebauer, M., and C. J. Alexander ( 1991 ), Shuffling foot points and magnetohydrodynamic discontinuities in the solar wind, J. Geophys. Res., 96, 9409 – 9418, doi: 10.1029/91JA00566.
dc.identifier.citedreferenceNeugebauer, M., and J. Giacalone ( 2010 ), Progress in the study of interplanetary discontinuities, AIP Conf. Proc., 1216, 194.
dc.identifier.citedreferenceNeugebauer, M., D. R. Clay, B. E. Goldstein, B. T. Tsurutani, and R. D. Zwickl ( 1984 ), A reexamination of rotational and tangential discontinuities in the solar wind, J. Geophys. Res., 89, 5395 – 5408, doi: 10.1029/JA089iA07p05395.
dc.identifier.citedreferenceNeugebauer, M., C. J. Alexander, R. Schwenn, and A. K. Richter ( 1986 ), Tangential discontinuities in the solar wind: Correlated field and velocity changes and the Kelvin‐Helmholtz instability, J. Geophys. Res., 91, 13,694 – 13,698, doi: 10.1029/JA091iA12p13694.
dc.identifier.citedreferenceOtnes, R. K., and L. Enochson ( 1972 ), Digital Time Series Analysis, chap. 5 and 6, Wiley, New York.
dc.identifier.citedreferenceOwens, M. J., R. T. Wicks, and T. S. Horbury ( 2011 ), Magnetic discontinuities in the near‐Earth solar wind: Evidence of in‐transit turbulence or remnants of coronal structure?, Solar Phys., 269, 411 – 420.
dc.identifier.citedreferencePennetta, C. ( 2006 ), Distribution of return intervals in extreme events, Eur. Phys. J. B, 50, 95.
dc.identifier.citedreferencePercival, D. B., and A. T. Walden ( 1993 ), Spectral Analysis for Physical Applications, Cambridge Univ. Press, Cambridge.
dc.identifier.citedreferencePerri, S., M. L. Goldstein, J. C. Dorelli, and F. Sahraoui ( 2012 ), Detection of small‐scale structures in the dissipation regime of solar‐wind turbulence, Phys. Rev. Lett., 109, 191101.
dc.identifier.citedreferencePodesta, J. J. ( 2012 ), The need to consider ion Bernstein waves as a dissipation channel of solar wind turbulence, J. Geophys. Res., 117, A07101, doi: 10.1029/2012JA017770.
dc.identifier.citedreferencePodesta, J. J., D. A. Roberts, and M. L. Goldstein ( 2007 ), Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence, Astrophys. J., 664, 543.
dc.identifier.citedreferencePodesta, J. J., J. E. Borovsky, and S. P. Gary ( 2010 ), A kinetic Alfven wave cascade subject to collisionless damping cannot reach electron scales in the solar wind at 1 AU, Astrophys. J., 712, 685.
dc.identifier.citedreferenceRiazantseva, M. O., G. N. Zastenker, and J. D. Richardson ( 2005a ), The characteristics of sharp (small‐scale) boundaries of solar wind plasma and magnetic field structures, Adv. Space Res., 35, 2147.
dc.identifier.citedreferenceRiazantseva, M. O., G. N. Zastenker, J. D. Richardson, and P. E. Eiges ( 2005b ), Sharp boundaries of small‐ and middle‐scale solar wind structures, J. Geophys. Res., 110, A12110, doi: 10.1029/2005JA011307.
dc.identifier.citedreferenceRichardson, J. D., and K. I. Paularena ( 2001 ), Plasma and magnetic field correlations in the solar wind, J. Geophys. Res., 106, 239 – 251, doi: 10.1029/2000JA000071.
dc.identifier.citedreferenceRoberts, D. A. ( 2012 ), Construction of solar‐wind‐like magnetic fields, Phys. Rev. Lett., 109, 231102.
dc.identifier.citedreferenceRoytershteyn, V., and W. Daughton ( 2008 ), Collisionless instability of thin current sheets in the presence of sheared parallel flows, Phys. Plasmas, 15, 082901.
dc.identifier.citedreferenceSahraoui, F., M. L. Goldstein, G. Belmont, P. Canu, and L. Rezeau ( 2010 ), Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind, Phys. Rev. Lett., 105, 131101.
dc.identifier.citedreferenceSahraoui, F., G. Belmont, and M. L. Goldstein ( 2012 ), New insight into short‐wavelength solar wind fluctuations from Vlasov theory, Astrophys. J., 748, 100.
dc.identifier.citedreferenceSaito, S., S. P. Gary, and Y. Narita ( 2010 ), Wavenumber spectrum of whistler turbulence: Particle‐in‐cell simulation, Phys. Plasmas, 17, 122316.
dc.identifier.citedreferenceSari, J. W., and N. F. Ness ( 1969 ), Power spectra of the interplanetary magnetic field, Solar Phys., 8, 155.
dc.identifier.citedreferenceGary, S. P. ( 1999 ), Collisionless dissipation wavenumber: Linear theory, J. Geophys. Res., 104, 6759 – 6762, doi: 10.1029/1998JA900161.
dc.identifier.citedreferenceSchindler, K., and M. Hesse ( 2008 ), Formation of thin bifurcated current sheets by quasisteady compression, Phys. Plasmas, 15, 042902.
dc.identifier.citedreferenceSchindler, K., and M. Hesse ( 2010 ), Conditions for the formation of nongyrotropic current sheets in slowly evolving plasmas, Phys. Plasmas, 17, 082103.
dc.identifier.citedreferenceScholer, M., I. Sidorenko, C. H. Jaroschek, R. A. Treumann, and A. Zeiler ( 2003 ), Onset of collisionless magnetic reconnection in thin current sheets: Three‐dimensional particle simulations, Phys. Plasmas, 10, 351.
dc.identifier.citedreferenceSimdyankin, S. I., and N. Mousseau ( 2003 ), Relationship between dynamical heterogeneities and stretched exponential relaxation, Phys. Rev. E, 68, 041110.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.