Show simple item record

Riparian plant biodiversity reduces stream channel migration rates in three rivers in Michigan, U.S.A.

dc.contributor.authorAllen, Daniel C.
dc.contributor.authorWynn‐thompson, Theresa M.
dc.contributor.authorKopp, Darin A.
dc.contributor.authorCardinale, Bradley J.
dc.date.accessioned2018-06-11T18:00:37Z
dc.date.available2019-08-01T19:53:23Zen
dc.date.issued2018-06
dc.identifier.citationAllen, Daniel C.; Wynn‐thompson, Theresa M. ; Kopp, Darin A.; Cardinale, Bradley J. (2018). "Riparian plant biodiversity reduces stream channel migration rates in three rivers in Michigan, U.S.A.." Ecohydrology 11(4): n/a-n/a.
dc.identifier.issn1936-0584
dc.identifier.issn1936-0592
dc.identifier.urihttps://hdl.handle.net/2027.42/144301
dc.description.abstractRecent work has shown that the biodiversity of organisms can influence geophysical processes such as the transport of streambed sediments and the erosion of soils. Yet most of this work has been conducted in smallâ scale fluvial system mimics, demonstrating a clear need to investigate the relationship between biodiversity and erosion in natural systems. We conducted an observational field study across 3 rivers in forested watersheds in northern Michigan, U.S.A., quantifying streambank retreat rates using aerial photos and measuring riparian plant community biodiversity and abundance. We hypothesized that more diverse riparian plant communities would produce greater woody plant stem density and basal area, which in turn would reduce erosion rates of streambanks due to increased root production. We used structural equation modelling to compare causal networks using plant biodiversity metrics to predict streambank migration rate indirectly through effects on plant abundance, as well as models that used migration rate to predict plant abundance indirectly through effects on plant biodiversity. Although structural equation models explained both causal pathways successfully, models using biodiversity to predict migration rate were a better fit to data than models that used migration rate to predict plant biodiversity and abundance. The best performing models suggested plant biodiversity was indirectly negatively correlated with erosion rate (average standardized path coefficient = â 0.22), after accounting for environmental differences between sites. This work adds to a growing body of evidence indicating that biodiversity can modify geophysical processes, demonstrating the need to explicitly account for biological variation when considering ecogeomorphic feedbacks.
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othererosion
dc.subject.otherriparian floodplain
dc.subject.otherbiodiversity and ecosystem function
dc.subject.otherbiogeomorphology
dc.subject.otherbiologicalâ geophysical feedbacks
dc.subject.otherecogeomorphology
dc.titleRiparian plant biodiversity reduces stream channel migration rates in three rivers in Michigan, U.S.A.
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144301/1/eco1972_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144301/2/eco1972.pdf
dc.identifier.doi10.1002/eco.1972
dc.identifier.sourceEcohydrology
dc.identifier.citedreferenceLi, L., Sun, J. H., Zhang, F. S., Guo, T. W., Bao, X. G., Smith, F. A., & Smith, S. E. ( 2006 ). Root distribution and interactions between intercropped species. Oecologia, 147 ( 2 ), 280 â 290. https://doi.org/10.1007/s00442â 005â 0256â 4
dc.identifier.citedreferenceAlbertson, L. K., & Allen, D. C. ( 2015 ). Metaâ analysis: Organism size, abundance, behavior, and hydraulic energy shape biotic effects on sediment transport in streams. Ecology, 96 ( 5 ), 1329 â 1339.
dc.identifier.citedreferenceAlbertson, L. K., Sklar, L. S., & Cardinale, B. J. ( 2014 ). Nonâ additive increases in sediment stability are generated by macroinvertebrate species interactions in streams. Plos One, 9 ( 8 ), e103417.
dc.identifier.citedreferenceAllen, D. C., Cardinale, B. J., & Wynnâ Thompson, T. ( 2014 ). Toward a better integration of ecological principles into ecogeoscience research. BioScience, 64 ( 5 ), 444 â 454. https://doi.org/10.1093/biosci/biu046
dc.identifier.citedreferenceAllen, D. C., Cardinale, B. J., & Wynnâ Thompson, T. ( 2016 ). Plant biodiversity effects in reducing fluvial erosion are limited to low species richness. Ecology, 97 ( 1 ), 17 â 24. https://doi.org/10.1890/15â 0800.1
dc.identifier.citedreferenceAllen, D. C., & Vaughn, C. C. ( 2011 ). Densityâ dependent biodiversity effects on physical habitat modification by freshwater biavalves. Ecology, 92 ( 5 ), 1013 â 1019.
dc.identifier.citedreferenceAtkinson, C. L., Allen, D. C., Davis, L., & Nickerson, Z. L. ( 2018 ). Incorporating ecogeomorphic feedbacks to better understand resiliency in streams: A review and directions moving forward. Geomorphology, 305 ( 1 ), 123 â 140.
dc.identifier.citedreferenceBalvanera, P., Pfisterer, A. B., Buchmann, N., He, J. S., Nakashizuka, T., Raffaelli, D., & Schmid, B. ( 2006 ). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9 ( 10 ), 1146 â 1156. https://doi.org/10.1111/j.1461â 0248.2006.00963.x
dc.identifier.citedreferenceBerendse, F., van Ruijven, J., Jongejans, E., & Keesstra, S. ( 2015 ). Loss of plant species diversity reduces soil erosion resistance. Ecosystems, 18 ( 5 ), 881 â 888. https://doi.org/10.1007/s10021â 015â 9869â 6
dc.identifier.citedreferenceBowker, M. A., Maestre, F. T., & Escolar, C. ( 2010 ). Biological crusts as a model system for examining the biodiversityâ ecosystem function relationship in soils. Soil Biology & Biochemistry, 42 ( 3 ), 405 â 417. https://doi.org/10.1016/j.soilbio.2009.10.025
dc.identifier.citedreferenceCorenblit, D., Davies, N. S., Steiger, J., Gibling, M. R., & Bornette, G. ( 2015 ). Considering river structure and stability in the light of evolution: Feedbacks between riparian vegetation and hydrogeomorphology. Earth Surface Processes and Landforms, 40 ( 2 ), 189 â 207. https://doi.org/10.1002/esp.3643
dc.identifier.citedreferenceGoebel, P. C., Pregitzer, K. S., & Palik, B. J. ( 2012 ). Influence of flooding and landform properties on riparian plant communities in an oldâ growth northern hardwood watershed. Wetlands, 32 ( 4 ), 679 â 691. https://doi.org/10.1007/s13157â 012â 0300â 1
dc.identifier.citedreferenceGrace, J. B. ( 2006 ). Structural equation modeling and natural systems. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceHupp, C. R., & Osterkamp, W. R. ( 1996 ). Riparian vegetation and fluvial geomorphic processes. Geomorphology, 14 ( 4 ), 277 â 295. https://doi.org/10.1016/0169â 555x(95)00042â 4
dc.identifier.citedreferenceKnighton, D. A. ( 1998 ). Fluvial forms and processes. London, UK: Hodder Arnold.
dc.identifier.citedreferenceKobayashi, Y., & Mori, A. S. ( 2017 ). The potential role of tree diversity in reducing shallow landslide risk. Environmental Management, 59, 1 â 9. https://doi.org/10.1007/s00267â 017â 0820â 9
dc.identifier.citedreferenceKupfer, J. A., & Malanson, G. P. ( 1993 ). Observed and modeled directional change in riparian forest composition at a cutbank edge. Landscape Ecology, 8 ( 3 ), 185 â 199. https://doi.org/10.1007/bf00125350
dc.identifier.citedreferenceMeitzen, K. M. ( 2009 ). Lateral channel migration effects on riparian forest structure and composition, Congaree River, South Carolina, USA. Wetlands, 29 ( 2 ), 465 â 475.
dc.identifier.citedreferenceMulder, C. P. H., Jumpponen, A., Hogberg, P., & Hussâ Danell, K. ( 2002 ). How plant diversity and legumes affect nitrogen dynamics in experimental grassland communities. Oecologia, 133 ( 3 ), 412 â 421. https://doi.org/10.1007/s00442â 002â 1043â 0
dc.identifier.citedreferenceSchmid, B., Pfisterer, A. B., & Balvanera, P. ( 2009 ). Effects of biodiversity on ecosystem, community, and population variables reported 1974â 2004. Ecology, 90, 853.
dc.identifier.citedreferenceStromberg, J. C., Hazelton, A. F., & White, M. S. ( 2009 ). Plant species richness in ephemeral and perennial reaches of a dryland river. Biodiversity and Conservation, 18 ( 3 ), 663 â 677. https://doi.org/10.1007/s10531â 008â 9532â z
dc.identifier.citedreferenceThorne, C. R. ( 1982 ). Processes and mechanisms of river bank erosion. In R. D. Hey, J. C. Bathurst, & C. R. Thorne (Eds.), Gravelâ bed Rivers (pp. 125 â 144 ). West Sussex, England: John Wiley and Sons.
dc.identifier.citedreferenceWang, Z., Hou, Y., Fang, H., Yu, D., Zhang, M., Xu, C., â ¦ Sun, L. ( 2012 ). Effects of plant species diversity on soil conservation and stability in the secondary succession phases of a semihumid evergreen broadleaf forest in China. Journal of Soil and Water Conservation, 67 ( 4 ), 311 â 320. https://doi.org/10.2489/jswc.67.4.311
dc.identifier.citedreferenceWynn, T. M., & Mostaghimi, S. ( 2006 ). The effects of vegetation and soil type on streambank erosion, southwestern Virginia, USA. Journal of the American Water Resources Association, 42 ( 1 ), 69 â 82.
dc.identifier.citedreferenceWynn, T. M., Mostaghimi, S., Burger, J. A., Harpold, A. A., Henderson, M. B., & Henry, L. A. ( 2004 ). Variation in root density along stream banks. Journal of Environmental Quality, 33 ( 6 ), 2030 â 2039.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.