Show simple item record

Dynamic behavior of a smart device on a surface subjected to earthquake motion

dc.contributor.authorNa, Yunsu
dc.contributor.authorEl-Tawil, Sherif
dc.contributor.authorIbrahim, Ahmed
dc.contributor.authorEltawil, Ahmed
dc.date.accessioned2018-06-11T18:00:47Z
dc.date.available2019-09-04T20:15:38Zen
dc.date.issued2018-07-25
dc.identifier.citationNa, Yunsu; El-Tawil, Sherif; Ibrahim, Ahmed; Eltawil, Ahmed (2018). "Dynamic behavior of a smart device on a surface subjected to earthquake motion." Earthquake Engineering & Structural Dynamics 47(9): 1905-1920.
dc.identifier.issn0098-8847
dc.identifier.issn1096-9845
dc.identifier.urihttps://hdl.handle.net/2027.42/144310
dc.publisherPrepared by the SAC Joint Venture for FEMA
dc.publisherWiley Periodicals, Inc.
dc.subject.othersmart device
dc.subject.otherstick‐slip
dc.subject.othertransition point
dc.subject.othersliding potential
dc.subject.otherprobability of exceeding the slip limit
dc.subject.otherfriction model
dc.subject.otheraccelerometer
dc.titleDynamic behavior of a smart device on a surface subjected to earthquake motion
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelCivil and Environmental Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144310/1/eqe3048_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144310/2/eqe3048.pdf
dc.identifier.doi10.1002/eqe.3048
dc.identifier.sourceEarthquake Engineering & Structural Dynamics
dc.identifier.citedreferenceGazetas G, Garini E, Berrill JB, Apostolou M. Sliding and overturning potential of Christchurch 2011 earthquake records. Earthq Eng Struct D. 2012; 41 ( February ): 1921 ‐ 1944. https://doi.org/10.1002/eqe
dc.identifier.citedreferenceFederal Emergency Management Agency (FEMA). Recommended seismic design criteria for new steel moment‐frame buildings. FEMA‐350. Washington, D.C: Prepared by the SAC Joint Venture for FEMA; 2000.
dc.identifier.citedreferenceNa Y, El‐Tawil S, Ibrahim A, Eltawil A. The feasibility of using smart devices for quantifying seismic damage to buildings. Structures Congress 2017, 2017. https://doi.org/10.1061/9780784480427.
dc.identifier.citedreferenceKhoshnoud F, De Silva CW. Recent advances in MEMS sensor technology‐mechanical applications. IEEE Inst Meas Mag. 2012; 15 ( 2 ): 14 ‐ 24. https://doi.org/10.1109/MIM.2012.6174574
dc.identifier.citedreferenceBarbour N, Schmidt G. Inertial sensor technology trends. IEEE Sens. J. 2001; 1 ( 4 ): 332 ‐ 339. https://doi.org/10.1109/7361.983473
dc.identifier.citedreferenceHsieh C, Pan YC. Dynamic behavior and modelling of the pre‐sliding static friction. Wear. 2000; 242 ( 1‐2 ): 1 ‐ 17. https://doi.org/10.1016/S0043‐1648(00)00399‐9
dc.identifier.citedreferenceParlitz U, Hornstein A, Engster D, et al. Identification of pre‐sliding friction dynamics. Chaos: Interdiscipl J Nonlinear Sci. 2004; 14 ( 2 ): 420 ‐ 430. https://doi.org/10.1063/1.1737818
dc.identifier.citedreferenceCanudas De Wit C, Aström KJ, Lischinsky P. A new model for control of systems with friction. IEEE Transact Automat Contr. 1995; 40 ( 3 ): 419 ‐ 425. https://doi.org/10.1109/9.376053
dc.identifier.citedreferenceDahl P. Solid friction damping of spacecraft oscillations. Proc of AIAA Guidance and Control Conference, 1975. https://doi.org/10.2514/6.1975‐1104.
dc.identifier.citedreferenceChoi JJ, Han SI, Kim JS. Development of a novel dynamic friction model and precise tracking control using adaptive back‐stepping sliding mode controller. Mechatronics. 2006; 16 ( 2 ): 97 ‐ 104. https://doi.org/10.1016/j.mechatronics.2005.10.004
dc.identifier.citedreferenceLampaert V, Swevers J, Al‐Bender F. Modification of the Leuven integrated friction model structure. IEEE Transact Automat Contr. 2002; 47 ( 4 ): 683 ‐ 687. https://doi.org/10.1109/9.995050
dc.identifier.citedreferenceSwevers J, Al‐Bender F, Ganseman CG, Projogo T. An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Transact Automat Contr. 2000; 45 ( 4 ): 675 ‐ 686. https://doi.org/10.1109/9.847103
dc.identifier.citedreferenceKarnopp D. Computer simulation of stick‐slip friction in mechanical dynamic systems. J DYN Syst, Meas, Control. 1985; 107 ( 1 ): 100 ‐ 103.
dc.identifier.citedreferenceTan X, Rogers R. Dynamic friction modelling in heat exchanger tube simulations. ASME, Flow‐Induced Vibration. 1996; 328.
dc.identifier.citedreferenceTariku FA, Rogers RJ. Improved dynamic friction models for simulation of one‐dimensional and two‐dimensional stick‐slip motion. J Tribol. 2000; 123 ( 4 ): 661 ‐ 669. https://doi.org/10.1115/1.1331057
dc.identifier.citedreferenceAntunes J, Axisa F, Beaufils B, Guilbaud D. Coulomb friction modelling in numericalsimulations of vibration and wear work rate of multispan tube bundles. J Fluid Struct. 1990; 4 ( 3 ): 287 ‐ 304.
dc.identifier.citedreferenceGazetas G, Garini E, Anastasopoulos I, Georgarakos T. Effects of near‐fault ground shaking on sliding systems. J Geotech Geoenviron Eng. 2009; 135 ( 12 ): 1906 ‐ 1921. https://doi.org/10.1061/(ASCE)GT.1943‐5606.0000174
dc.identifier.citedreferenceWestermo B, Udwadia F. Periodic response of a sliding oscillator system to harmonic excitation. Earthq Eng Struct D. 1983; 11 ( 1 ): 135 ‐ 146. https://doi.org/10.1002/eqe.4290110111
dc.identifier.citedreferenceSorine M. Applications of hysteresis models: Contact friction in tires, muscle contraction. IEEE CDC 98 Workshop, 1998.
dc.identifier.citedreferenceVelenis E, Tsiotras P, Canudas De Wit C. Extension of the lugre dynamic tire friction model to 2D motion. In: Proceedings of the 10th IEEE Mediterranean Conference on Control and Automation‐MED2002; 2002.
dc.identifier.citedreferenceFederal Emergency Management Agency (FEMA). Quantification of building seismic performance factors. FEMA P‐695. Washington, D.C; 2009.
dc.identifier.citedreferenceASCE. Minimum Design Loads for Buildings and Other Structures, ASCE Standard ASCE/SEI 7–05, including Supplement No. 1, American Society of Civil Engineers, Reston, Virginia. 2002. https://doi.org/10.1061/9780784412916.
dc.identifier.citedreferenceSarma SK, Scorer M. The effect of vertical accelerations on seismic slope stability. Proceedings of the International Conference on Performance Based Design in Earthquake Geotechnical Engineering IS‐Tokyo, 1990. https://doi.org/10.13140/2.1.2814.3045.
dc.identifier.citedreferenceWu T‐Y, El‐Tawil S, McCormick J. Highly Ductile Limits for Deep Steel Columns. Journal of Structural Engineering 144.4. 2018: 04018016.
dc.identifier.citedreferenceFederal Emergency Management Agency (FEMA). Seismic Performance Assessment of Buildings. vol. 1. FEMA P‐58. Washington, D.C; 2012.
dc.identifier.citedreferenceDashti S, Bray JD, Reilly J, Glaser S, Bayen A, Mari E. Evaluating the reliability of phones as seismic monitoring instruments. Earthq Spectra. 2014; 30 ( 2 ): 721 ‐ 742. https://doi.org/10.1193/091711EQS229M
dc.identifier.citedreferenceLi H, Dong S, El‐Tawil S, Kamat V. Relative displacement sensing techniques for postevent structural damage assessment: Review. J Struct Eng. 2012; 356 ( September ): 1421 ‐ 1434.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.