Show simple item record

Ecomorphological and phylogenetic controls on sympatry across extant bats

dc.contributor.authorShi, Jeff J.
dc.contributor.authorWesteen, Erin P.
dc.contributor.authorKatlein, Nathan T.
dc.contributor.authorDumont, Elizabeth R.
dc.contributor.authorRabosky, Daniel L.
dc.date.accessioned2018-07-13T15:46:14Z
dc.date.available2019-09-04T20:15:38Zen
dc.date.issued2018-07
dc.identifier.citationShi, Jeff J.; Westeen, Erin P.; Katlein, Nathan T.; Dumont, Elizabeth R.; Rabosky, Daniel L. (2018). "Ecomorphological and phylogenetic controls on sympatry across extant bats." Journal of Biogeography 45(7): 1560-1570.
dc.identifier.issn0305-0270
dc.identifier.issn1365-2699
dc.identifier.urihttps://hdl.handle.net/2027.42/144581
dc.description.abstractAimMacroecological patterns of sympatry can inform our understanding of how ecological and evolutionary processes govern species distributions. Following speciation, both intrinsic and extrinsic factors may determine how readily sympatry occurs. One possibility is that sympatry most readily occurs with ecological divergence, especially if broad‐scale co‐occurrence is mediated by niche differentiation. Time since divergence may also predict sympatry if hybridization and gene flow lead to the collapse of species boundaries between closely related taxa. Here, we test for ecological and phylogenetic predictors of sympatry across the global radiation of extant bats.LocationGlobal.TaxonBats (Order Chiroptera).MethodsWe used a combination of linear mixed‐modelling, simulations and maximum‐likelihood modelling to test whether phylogenetic and ecomorphological divergence between species predict sympatry. We further assess how these relationships vary based on biogeographic realm.ResultsWe find that time since divergence does not predict sympatry in any biogeographic realm. Morphological divergence is negatively related to sympatry in the Neotropics, but shows no relationship with sympatry elsewhere.Main conclusionsWe find that bats in most biogeographic realms co‐occur at broad spatial scales regardless of phylogenetic similarity. Neotropical bats, however, appear to co‐occur most readily when morphologically similar. To the extent that pairwise phylogenetic and morphological divergence reflect ecological differentiation, our results suggest that abiotic and environmental factors may be more important than species interactions in determining patterns of sympatry across bats.
dc.publisherHarper and Row
dc.publisherWiley Periodicals, Inc.
dc.subject.othersympatry
dc.subject.otherChiroptera
dc.subject.otherecomorphology
dc.subject.otherevolutionary ecology
dc.subject.othermacroecology
dc.subject.othermacroevolution
dc.titleEcomorphological and phylogenetic controls on sympatry across extant bats
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeography and Maps
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144581/1/jbi13353-sup-0005-FigureS5.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144581/2/jbi13353.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144581/3/jbi13353-sup-0006-FigureS6.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144581/4/jbi13353-sup-0003-FigureS3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144581/5/jbi13353-sup-0004-FigureS4.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144581/6/jbi13353_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144581/7/jbi13353-sup-0002-FigureS2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144581/8/jbi13353-sup-0001-FigureS1.pdf
dc.identifier.doi10.1111/jbi.13353
dc.identifier.sourceJournal of Biogeography
dc.identifier.citedreferenceSantana, S. E., & Lofgren, S. E. ( 2013 ). Does nasal echolocation influence the modularity of the mammal skull? Journal of Evolutionary Biology, 26, 2520 – 2526. https://doi.org/10.1111/jeb.12235
dc.identifier.citedreferenceRabosky, D. L., Cowan, M. A., Talaba, A. L., & Lovette, I. J. ( 2011 ). Species interactions mediate phylogenetic community structure in a hyperdiverse lizard assemblage from arid Australia. The American Naturalist, 178, 579 – 595. https://doi.org/10.1086/662162
dc.identifier.citedreferenceRicklefs, R. E. ( 2007 ). History and diversity: Explorations at the intersection of ecology and evolution. The American Naturalist, 170 ( Suppl ), S56 – S70. https://doi.org/10.1086/519402
dc.identifier.citedreferenceSantana, S. E., & Cheung, E. ( 2016 ). Go big or go fish: Morphological specializations in carnivorous bats. Proceedings of the Royal Society B: Biological Sciences, 283, 20160615. https://doi.org/10.1098/rspb.2016.0615
dc.identifier.citedreferenceSantana, S. E., Dumont, E. R., & Davis, J. L. ( 2010 ). Mechanics of bite force production and its relationship to diet in bats. Functional Ecology, 24, 776 – 784. https://doi.org/10.1111/j.1365-2435.2010.01703.x
dc.identifier.citedreferenceSaunders, M. B., & Barclay, R. M. R. ( 1992 ). Ecomorphology of insectivorous bats: A test of predictions using two morphologically similar species. Ecology, 73, 1335 – 1345. https://doi.org/10.2307/1940680
dc.identifier.citedreferenceSchoeman, M. C., & Jacobs, D. S. ( 2003 ). Support for the allotonic frequency hypothesis in an insectivorous bat community. Oecologia, 134, 154 – 162. https://doi.org/10.1007/s00442-002-1107-1
dc.identifier.citedreferenceSchoeman, M. C., & Jacobs, D. S. ( 2011 ). The relative influence of competition and prey defences on the trophic structure of animalivorous bat ensembles. Oecologia, 1, 493 – 506. https://doi.org/10.1007/s00442-010-1854-3
dc.identifier.citedreferenceSexton, J. P., McIntyre, P. J., Angert, A. L., & Rice, K. J. ( 2009 ). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40, 415 – 436. https://doi.org/10.1146/annurev.ecolsys.110308.120317
dc.identifier.citedreferenceShi, J. J., & Rabosky, D. L. ( 2015 ). Speciation dynamics during the global radiation of extant bats. Evolution, 69, 1528 – 1545. https://doi.org/10.1111/evo.12681
dc.identifier.citedreferenceSiemers, B. M., & Schnitzler, H.‐U. ( 2004 ). Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature, 429, 657 – 661. https://doi.org/10.1038/nature02547
dc.identifier.citedreferenceSilvestro, D., Antonelli, A., Salamin, N., & Quental, T. B. ( 2015 ). The role of clade competition in the diversification of North American canids. Proceedings of the National Academy of Sciences of the United States of America, 112, 8684 – 8689. https://doi.org/10.1073/pnas.1502803112
dc.identifier.citedreferenceSimmons, N. B. ( 2005 ). Order Chiroptera. In D. E. Wilson, & D. M. Reeder (Eds.), Mammal species of the world: A taxonomic and geographic reference ( 3rd ed., pp. 312 – 529 ). Baltimore, MD: Johns Hopkins University Press.
dc.identifier.citedreferenceSimmons, N. B., & Conway, T. M. ( 2003 ). Evolution of ecological diversity in bats. In T. H. Kunz, & M. B. Fenton (Eds.), Bat ecology (pp. 493 – 535 ). Chicago, IL: University of Chicago Press.
dc.identifier.citedreferenceSpiesman, B. J., & Inouye, B. D. ( 2014 ). The consequences of multiple indirect pathways of interaction for species coexistence. Theoretical Ecology, 8, 225 – 232.
dc.identifier.citedreferenceStuart, Y. E., & Losos, J. B. ( 2013 ). Ecological character displacement: Glass half full or half empty? Trends in Ecology and Evolution, 28, 402 – 408. https://doi.org/10.1016/j.tree.2013.02.014
dc.identifier.citedreferenceSwift, S. M., & Racey, P. A. ( 1983 ). Resource partitioning in two species of vespertilionid bats (Chiroptera) occupying the same roost. Journal of Zoology, 200, 249 – 259.
dc.identifier.citedreferenceTaylor, E. B., Boughman, J. W., Groenenboom, M., Sniatynski, M., Schluter, D., & Gow, J. L. ( 2006 ). Speciation in reverse: Morphological and genetic evidence of the collapse of a three‐spined stickleback (Gasterosteus aculeatus) species pair. Molecular Ecology, 15, 343 – 355.
dc.identifier.citedreferenceTerribile, L. C., Diniz‐Filho, J. A. F., Rodríguez, M. Á., & Rangel, T. F. L. V. B. ( 2009 ). Richness patterns, species distributions and the principle of extreme deconstruction. Global Ecology and Biogeography, 18, 123 – 136. https://doi.org/10.1111/j.1466-8238.2008.00440.x
dc.identifier.citedreferenceTobias, J. A., Cornwallis, C. K., Derryberry, E. P., Claramunt, S., Brumfield, R. T., & Seddon, N. ( 2014 ). Species coexistence and the dynamics of phenotypic evolution in adaptive radiation. Nature, 506, 359 – 363. https://doi.org/10.1038/nature12874
dc.identifier.citedreferenceVillalobos, F., & Arita, H. T. ( 2010 ). The diversity field of New World leaf‐nosed bats (Phyllostomidae). Global Ecology and Biogeography, 19, 200 – 211. https://doi.org/10.1111/j.1466-8238.2009.00503.x
dc.identifier.citedreferenceVoss, R. S., Fleck, D. W., Strauss, R. E., Velazco, P. M., & Simmons, N. B. ( 2016 ). Roosting ecology of Amazonian bats: Evidence for guild structure in hyperdiverse mammalian communities. American Museum Novitates, 3870, 1 – 43. https://doi.org/10.1206/3870.1
dc.identifier.citedreferenceWarren, D. L., Cardillo, M., Rosauer, D. F., & Bolnick, D. I. ( 2014 ). Mistaking geography for biology: Inferring processes from species distributions. Trends in Ecology and Evolution, 29, 572 – 580. https://doi.org/10.1016/j.tree.2014.08.003
dc.identifier.citedreferenceWebb, C. O. ( 2000 ). Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. The American Naturalist, 156, 145 – 155. https://doi.org/10.1086/303378
dc.identifier.citedreferenceWeir, J. T., & Price, T. D. ( 2011 ). Limits to speciation inferred from times to secondary sympatry and ages of hybridizing species along a latitudinal gradient. The American Naturalist, 177, 462 – 469. https://doi.org/10.1086/658910
dc.identifier.citedreferenceAdams, R. A., & Thibault, K. M. ( 2006 ). Temporal resource partitioning by bats at water holes. Journal of Zoology, 270, 466 – 472. https://doi.org/10.1111/j.1469-7998.2006.00152.x
dc.identifier.citedreferenceAdler, P. B., HilleRisLambers, J., & Levine, J. M. ( 2007 ). A niche for neutrality. Ecology Letters, 10, 95 – 104. https://doi.org/10.1111/j.1461-0248.2006.00996.x
dc.identifier.citedreferenceAguirre, L. F., Herrel, A., van Damme, R., & Matthysen, E. ( 2002 ). Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community. Proceedings of the Royal Society B: Biological Sciences, 269, 1271 – 1278. https://doi.org/10.1098/rspb.2002.2011
dc.identifier.citedreferenceAnacker, B. L., & Strauss, S. Y. ( 2014 ). The geography and ecology of plant speciation: Range overlap and niche divergence in sister species. Proceedings of the Royal Society B: Biological Sciences, 281, 20132980. https://doi.org/10.1098/rspb.2013.2980
dc.identifier.citedreferenceBarraclough, T. G., & Vogler, A. P. ( 2000 ). Detecting the geographical pattern of speciation from species‐level phylogenies. The American Naturalist, 155, 419 – 434.
dc.identifier.citedreferenceBengtsson, J. ( 1989 ). Interspecific competition increases local extinction rate in a metapopulation system. Nature, 340, 713 – 715. https://doi.org/10.1038/340713a0
dc.identifier.citedreferenceBrown, W. L. Jr., & Wilson, E. O. ( 1956 ). Character displacement. Systematic Zoology, 5, 49 – 64. https://doi.org/10.2307/2411924
dc.identifier.citedreferenceCardillo, M., & Warren, D. L. ( 2016 ). Analysing patterns of spatial and niche overlap among species at multiple resolutions. Global Ecology and Biogeography, 25, 951 – 963. https://doi.org/10.1111/geb.12455
dc.identifier.citedreferenceCavender‐Bares, J., Kozak, K. H., Fine, P. V. A., & Kembel, S. W. ( 2009 ). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693 – 715. https://doi.org/10.1111/j.1461-0248.2009.01314.x
dc.identifier.citedreferenceChesson, P. L. ( 1986 ). Environmental variation and the coexistence of species. In J. Diamond & T. J. Case (Eds), Community ecology (pp. 240 – 256 ). New York, NY: Harper and Row.
dc.identifier.citedreferenceChesson, P. ( 2000 ). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343 – 366. https://doi.org/10.1146/annurev.ecolsys.31.1.343
dc.identifier.citedreferenceColwell, R. K., & Lees, D. C. ( 2000 ). The mid‐domain effect: Geometric constraints on the geography of species richness. Trends in Ecology and Evolution, 15, 70 – 76. https://doi.org/10.1016/S0169-5347(99)01767-X
dc.identifier.citedreferenceConnell, J. H. ( 1972 ). Interactions on marine rocky intertidal shores. Annual Review of Ecology and Systematics, 3, 169 – 192. https://doi.org/10.1146/annurev.es.03.110172.001125
dc.identifier.citedreferenceCorcoran, A. J., & Conner, W. E. ( 2014 ). Bats jamming bats: Food competition through sonar interference. Science, 346, 745 – 747. https://doi.org/10.1126/science.1259512
dc.identifier.citedreferenceCurtis, A. A., & Simmons, N. B. ( 2017 ). Unique turbinal morphology in horseshoe bats (Chiroptera: Rhinolophidae). The Anatomical Record, 300, 309 – 325. https://doi.org/10.1002/ar.23516
dc.identifier.citedreferenceDumont, E. R. ( 2004 ). Patterns of diversity in cranial shape among plant‐visiting bats. Acta Chiropterologica, 6, 59 – 74. https://doi.org/10.3161/001.006.0105
dc.identifier.citedreferenceDumont, E. R., Dávalos, L. M., Goldberg, A., Santana, S. E., Rex, K., & Voigt, C. C. ( 2012 ). Morphological innovation, diversification and invasion of a new adaptive zone. Proceedings of the Royal Society B: Biological Sciences, 279, 1797 – 1805. https://doi.org/10.1098/rspb.2011.2005
dc.identifier.citedreferenceDunson, W., & Travis, J. ( 1991 ). The role of abiotic factors in community organization. The American Naturalist, 138, 1067 – 1091. https://doi.org/10.1086/285270
dc.identifier.citedreferenceEstrada‐Villegas, S., McGill, B. J., & Kalko, E. K. V. ( 2012 ). Climate, habitat & species interactions at different scales determine the structure of a Neotropical bat community. Ecology, 93, 1183 – 1193. https://doi.org/10.1890/11-0275.1
dc.identifier.citedreferenceFenton, M. B., & Thomas, D. W. ( 1980 ). Dry‐season overlap in activity patterns, habitat use & prey selection by sympatric African insectivorous bats. Biotropica, 12, 81 – 90. https://doi.org/10.2307/2387723
dc.identifier.citedreferenceFindley, J. S., & Black, H. A. L. ( 1983 ). Morphological and dietary structuring of a Zambian insectivorous bat community. Ecology, 64, 625 – 630. https://doi.org/10.2307/1937180
dc.identifier.citedreferenceFitzpatrick, B. M., & Turelli, M. ( 2006 ). The geography of mammalian speciation: Mixed signals from phylogenies and range maps. Evolution, 60, 601 – 615. https://doi.org/10.1111/j.0014-3820.2006.tb01140.x
dc.identifier.citedreferenceFleming, T. H. ( 1986 ). Opportunism versus specialization: The evolution of feeding strategies in frugivorous bats. In A. Estrada & T. H. Fleming (Eds), Frugivores and seed dispersal (pp. 105 – 118 ). Dordrecht, Netherlands: Dr W. Junk Publishers. https://doi.org/10.1007/978-94-009-4812-9
dc.identifier.citedreferenceGraham, C. H., & Fine, P. V. A. ( 2008 ). Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time. Ecology Letters, 11, 1265 – 1277. https://doi.org/10.1111/j.1461-0248.2008.01256.x
dc.identifier.citedreferenceGrant, P. R., & Grant, B. R. ( 1997 ). Genetics and the origin of bird species. Proceedings of the National Academy of Sciences of the United States of America, 94, 7768 – 7775. https://doi.org/10.1073/pnas.94.15.7768
dc.identifier.citedreferenceGrossenbacher, D., Briscoe Runquist, R., Goldberg, E. E., & Brandvain, Y. ( 2015 ). Geographic range size is predicted by plant mating system. Ecology Letters, 18, 706 – 713. https://doi.org/10.1111/ele.12449
dc.identifier.citedreferenceHadfield, J. D. ( 2010 ). MCMC methods for multi‐response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33, 1 – 22.
dc.identifier.citedreferenceHadfield, J. D., & Nakagawa, S. ( 2010 ). General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi‐trait models for continuous and categorical characters. Journal of Evolutionary Biology, 23, 494 – 508. https://doi.org/10.1111/j.1420-9101.2009.01915.x
dc.identifier.citedreferenceHeithaus, E. R., Fleming, T. H., & Opler, P. A. ( 1975 ). Foraging patterns and resource utilization in seven species of bats in a seasonal tropical forest. Ecology, 56, 841 – 854. https://doi.org/10.2307/1936295
dc.identifier.citedreferenceHenry, M., Barrière, P., Gautier‐Hion, A., & Colyn, M. ( 2004 ). Species composition, abundance and vertical stratification of a bat community (Megachiroptera: Pteropodidae) in a West African rain forest. Journal of Tropical Ecology, 20, 21 – 29. https://doi.org/10.1017/S0266467404006145
dc.identifier.citedreferenceIUCN. ( 2016 ) The IUCN red list of threatened species. Version 2016‐2.
dc.identifier.citedreferenceJones, K. E., Bininda‐Emonds, O. R. P., & Gittleman, J. L. ( 2005 ). Bats, clocks & rocks: Diversification patterns in Chiroptera. Evolution, 59, 2243 – 2255. https://doi.org/10.1111/j.0014-3820.2005.tb00932.x
dc.identifier.citedreferenceJønsson, K. A., Tøttrup, A. P., Borregaard, M. K., Keith, S. A., Rahbek, C., & Thorup, K. ( 2016 ). Tracking animal dispersal: From individual movement to community assembly and global range dynamics. Trends in Ecology and Evolution, 31, 204 – 214. https://doi.org/10.1016/j.tree.2016.01.003
dc.identifier.citedreferenceKingston, T., Jones, G., Zubaid, A., & Kunz, T. H. ( 2000 ). Resource partitioning in rhinolophoid bats revisited. Oecologia, 124, 332 – 342. https://doi.org/10.1007/PL00008866
dc.identifier.citedreferenceKingston, T., & Rossiter, S. J. ( 2004 ). Harmonic‐hopping in Wallacea’s bats. Nature, 429, 654 – 657. https://doi.org/10.1038/nature02487
dc.identifier.citedreferenceKneitel, J. M., & Chase, J. M. ( 2004 ). Trade‐offs in community ecology: Linking spatial scales and species coexistence. Ecology Letters, 7, 69 – 80. https://doi.org/10.1046/j.1461-0248.2003.00551.x
dc.identifier.citedreferenceKronfeld‐Schor, N., & Dayan, T. ( 2003 ). Partitioning of time as an ecological resource. Annual Review of Ecology, Evolution & Systematics, 34, 153 – 181. https://doi.org/10.1146/annurev.ecolsys.34.011802.132435
dc.identifier.citedreferenceLeibold, M. A., & McPeek, M. A. ( 2006 ). Coexistence of the niche and neutral perspectives in community ecology. Ecology, 87, 1399 – 1410. https://doi.org/10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2
dc.identifier.citedreferenceLessard, J. P., Belmaker, J., Myers, J. A., Chase, J. M., & Rahbek, C. ( 2012 ). Inferring local ecological processes amid species pool influences. Trends in Ecology and Evolution, 27, 600 – 607. https://doi.org/10.1016/j.tree.2012.07.006
dc.identifier.citedreferenceLouthan, A. M., Doak, D. F., & Angert, A. L. ( 2015 ). Where and when do species interactions set range limits? Trends in Ecology and Evolution, 30, 780 – 792. https://doi.org/10.1016/j.tree.2015.09.011
dc.identifier.citedreferenceMcCain, C. M. ( 2007a ). Area and mammalian elevational diversity. Ecology, 88, 76 – 86. https://doi.org/10.1890/0012-9658(2007)88[76:AAMED]2.0.CO;2
dc.identifier.citedreferenceMcCain, C. M. ( 2007b ). Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography, 16, 1 – 13. https://doi.org/10.1111/j.1466-8238.2006.00263.x
dc.identifier.citedreferenceMcintire, E. J. B., & Fajardo, A. ( 2014 ). Facilitation as a ubiquitous driver of biodiversity. New Phytologist, 201, 403 – 416. https://doi.org/10.1111/nph.12478
dc.identifier.citedreferenceMcPeek, M. A., & Brown, J. M. ( 2000 ). Building a regional species pool: Diversification of the Enallagma damselflies in eastern North America. Ecology, 81, 904 – 920. https://doi.org/10.1890/0012-9658(2000)081[0904:BARSPD]2.0.CO;2
dc.identifier.citedreferenceMoreno, C., Arita, H., & Solis, L. ( 2006 ). Morphological assembly mechanisms in Neotropical bat assemblages and ensembles within a landscape. Oecologia, 149, 133 – 140. https://doi.org/10.1007/s00442-006-0417-0
dc.identifier.citedreferenceNogueira, M. R., Peracchi, A. L., & Monteiro, L. R. ( 2009 ). Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Functional Ecology, 23, 715 – 723. https://doi.org/10.1111/j.1365-2435.2009.01549.x
dc.identifier.citedreferenceNorberg, U. M., & Rayner, J. M. V. ( 1987 ). Ecological morphology and flight in bats (Mammalia; Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society B: Biological Sciences, 316, 335 – 427. https://doi.org/10.1098/rstb.1987.0030
dc.identifier.citedreferenceNowak, M. D. ( 1994 ). Walker’s bats of the world. Baltimore, MD: Johns Hopkins University Press.
dc.identifier.citedreferenceOlson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., … Kassem, K. R. ( 2001 ). Terrestrial ecoregions of the world: A new map of life on Earth. BioScience, 51, 933 – 938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
dc.identifier.citedreferencePhillimore, A. B., Orme, C. D. L., Thomas, G. H., Blackburn, T. M., Bennett, P. M., Gaston, K. J., & Owens, I. P. F. ( 2008 ). Sympatric speciation in birds is rare: Insights from range data and simulations. The American Naturalist, 171, 646 – 657. https://doi.org/10.1086/587074
dc.identifier.citedreferencePigot, A. L., & Tobias, J. A. ( 2013 ). Species interactions constrain geographic range expansion over evolutionary time. Ecology Letters, 16, 330 – 338. https://doi.org/10.1111/ele.12043
dc.identifier.citedreferencePigot, A. L., & Tobias, J. A. ( 2014 ). Dispersal and the transition to sympatry in vertebrates. Proceedings of the Royal Society B: Biological Sciences, 282, 20141929. https://doi.org/10.1098/rspb.2014.1929
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.