Ecomorphological and phylogenetic controls on sympatry across extant bats
dc.contributor.author | Shi, Jeff J. | |
dc.contributor.author | Westeen, Erin P. | |
dc.contributor.author | Katlein, Nathan T. | |
dc.contributor.author | Dumont, Elizabeth R. | |
dc.contributor.author | Rabosky, Daniel L. | |
dc.date.accessioned | 2018-07-13T15:46:14Z | |
dc.date.available | 2019-09-04T20:15:38Z | en |
dc.date.issued | 2018-07 | |
dc.identifier.citation | Shi, Jeff J.; Westeen, Erin P.; Katlein, Nathan T.; Dumont, Elizabeth R.; Rabosky, Daniel L. (2018). "Ecomorphological and phylogenetic controls on sympatry across extant bats." Journal of Biogeography 45(7): 1560-1570. | |
dc.identifier.issn | 0305-0270 | |
dc.identifier.issn | 1365-2699 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/144581 | |
dc.description.abstract | AimMacroecological patterns of sympatry can inform our understanding of how ecological and evolutionary processes govern species distributions. Following speciation, both intrinsic and extrinsic factors may determine how readily sympatry occurs. One possibility is that sympatry most readily occurs with ecological divergence, especially if broad‐scale co‐occurrence is mediated by niche differentiation. Time since divergence may also predict sympatry if hybridization and gene flow lead to the collapse of species boundaries between closely related taxa. Here, we test for ecological and phylogenetic predictors of sympatry across the global radiation of extant bats.LocationGlobal.TaxonBats (Order Chiroptera).MethodsWe used a combination of linear mixed‐modelling, simulations and maximum‐likelihood modelling to test whether phylogenetic and ecomorphological divergence between species predict sympatry. We further assess how these relationships vary based on biogeographic realm.ResultsWe find that time since divergence does not predict sympatry in any biogeographic realm. Morphological divergence is negatively related to sympatry in the Neotropics, but shows no relationship with sympatry elsewhere.Main conclusionsWe find that bats in most biogeographic realms co‐occur at broad spatial scales regardless of phylogenetic similarity. Neotropical bats, however, appear to co‐occur most readily when morphologically similar. To the extent that pairwise phylogenetic and morphological divergence reflect ecological differentiation, our results suggest that abiotic and environmental factors may be more important than species interactions in determining patterns of sympatry across bats. | |
dc.publisher | Harper and Row | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | sympatry | |
dc.subject.other | Chiroptera | |
dc.subject.other | ecomorphology | |
dc.subject.other | evolutionary ecology | |
dc.subject.other | macroecology | |
dc.subject.other | macroevolution | |
dc.title | Ecomorphological and phylogenetic controls on sympatry across extant bats | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Geography and Maps | |
dc.subject.hlbtoplevel | Social Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/144581/1/jbi13353-sup-0005-FigureS5.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/144581/2/jbi13353.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/144581/3/jbi13353-sup-0006-FigureS6.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/144581/4/jbi13353-sup-0003-FigureS3.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/144581/5/jbi13353-sup-0004-FigureS4.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/144581/6/jbi13353_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/144581/7/jbi13353-sup-0002-FigureS2.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/144581/8/jbi13353-sup-0001-FigureS1.pdf | |
dc.identifier.doi | 10.1111/jbi.13353 | |
dc.identifier.source | Journal of Biogeography | |
dc.identifier.citedreference | Santana, S. E., & Lofgren, S. E. ( 2013 ). Does nasal echolocation influence the modularity of the mammal skull? Journal of Evolutionary Biology, 26, 2520 – 2526. https://doi.org/10.1111/jeb.12235 | |
dc.identifier.citedreference | Rabosky, D. L., Cowan, M. A., Talaba, A. L., & Lovette, I. J. ( 2011 ). Species interactions mediate phylogenetic community structure in a hyperdiverse lizard assemblage from arid Australia. The American Naturalist, 178, 579 – 595. https://doi.org/10.1086/662162 | |
dc.identifier.citedreference | Ricklefs, R. E. ( 2007 ). History and diversity: Explorations at the intersection of ecology and evolution. The American Naturalist, 170 ( Suppl ), S56 – S70. https://doi.org/10.1086/519402 | |
dc.identifier.citedreference | Santana, S. E., & Cheung, E. ( 2016 ). Go big or go fish: Morphological specializations in carnivorous bats. Proceedings of the Royal Society B: Biological Sciences, 283, 20160615. https://doi.org/10.1098/rspb.2016.0615 | |
dc.identifier.citedreference | Santana, S. E., Dumont, E. R., & Davis, J. L. ( 2010 ). Mechanics of bite force production and its relationship to diet in bats. Functional Ecology, 24, 776 – 784. https://doi.org/10.1111/j.1365-2435.2010.01703.x | |
dc.identifier.citedreference | Saunders, M. B., & Barclay, R. M. R. ( 1992 ). Ecomorphology of insectivorous bats: A test of predictions using two morphologically similar species. Ecology, 73, 1335 – 1345. https://doi.org/10.2307/1940680 | |
dc.identifier.citedreference | Schoeman, M. C., & Jacobs, D. S. ( 2003 ). Support for the allotonic frequency hypothesis in an insectivorous bat community. Oecologia, 134, 154 – 162. https://doi.org/10.1007/s00442-002-1107-1 | |
dc.identifier.citedreference | Schoeman, M. C., & Jacobs, D. S. ( 2011 ). The relative influence of competition and prey defences on the trophic structure of animalivorous bat ensembles. Oecologia, 1, 493 – 506. https://doi.org/10.1007/s00442-010-1854-3 | |
dc.identifier.citedreference | Sexton, J. P., McIntyre, P. J., Angert, A. L., & Rice, K. J. ( 2009 ). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40, 415 – 436. https://doi.org/10.1146/annurev.ecolsys.110308.120317 | |
dc.identifier.citedreference | Shi, J. J., & Rabosky, D. L. ( 2015 ). Speciation dynamics during the global radiation of extant bats. Evolution, 69, 1528 – 1545. https://doi.org/10.1111/evo.12681 | |
dc.identifier.citedreference | Siemers, B. M., & Schnitzler, H.‐U. ( 2004 ). Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature, 429, 657 – 661. https://doi.org/10.1038/nature02547 | |
dc.identifier.citedreference | Silvestro, D., Antonelli, A., Salamin, N., & Quental, T. B. ( 2015 ). The role of clade competition in the diversification of North American canids. Proceedings of the National Academy of Sciences of the United States of America, 112, 8684 – 8689. https://doi.org/10.1073/pnas.1502803112 | |
dc.identifier.citedreference | Simmons, N. B. ( 2005 ). Order Chiroptera. In D. E. Wilson, & D. M. Reeder (Eds.), Mammal species of the world: A taxonomic and geographic reference ( 3rd ed., pp. 312 – 529 ). Baltimore, MD: Johns Hopkins University Press. | |
dc.identifier.citedreference | Simmons, N. B., & Conway, T. M. ( 2003 ). Evolution of ecological diversity in bats. In T. H. Kunz, & M. B. Fenton (Eds.), Bat ecology (pp. 493 – 535 ). Chicago, IL: University of Chicago Press. | |
dc.identifier.citedreference | Spiesman, B. J., & Inouye, B. D. ( 2014 ). The consequences of multiple indirect pathways of interaction for species coexistence. Theoretical Ecology, 8, 225 – 232. | |
dc.identifier.citedreference | Stuart, Y. E., & Losos, J. B. ( 2013 ). Ecological character displacement: Glass half full or half empty? Trends in Ecology and Evolution, 28, 402 – 408. https://doi.org/10.1016/j.tree.2013.02.014 | |
dc.identifier.citedreference | Swift, S. M., & Racey, P. A. ( 1983 ). Resource partitioning in two species of vespertilionid bats (Chiroptera) occupying the same roost. Journal of Zoology, 200, 249 – 259. | |
dc.identifier.citedreference | Taylor, E. B., Boughman, J. W., Groenenboom, M., Sniatynski, M., Schluter, D., & Gow, J. L. ( 2006 ). Speciation in reverse: Morphological and genetic evidence of the collapse of a three‐spined stickleback (Gasterosteus aculeatus) species pair. Molecular Ecology, 15, 343 – 355. | |
dc.identifier.citedreference | Terribile, L. C., Diniz‐Filho, J. A. F., Rodríguez, M. Á., & Rangel, T. F. L. V. B. ( 2009 ). Richness patterns, species distributions and the principle of extreme deconstruction. Global Ecology and Biogeography, 18, 123 – 136. https://doi.org/10.1111/j.1466-8238.2008.00440.x | |
dc.identifier.citedreference | Tobias, J. A., Cornwallis, C. K., Derryberry, E. P., Claramunt, S., Brumfield, R. T., & Seddon, N. ( 2014 ). Species coexistence and the dynamics of phenotypic evolution in adaptive radiation. Nature, 506, 359 – 363. https://doi.org/10.1038/nature12874 | |
dc.identifier.citedreference | Villalobos, F., & Arita, H. T. ( 2010 ). The diversity field of New World leaf‐nosed bats (Phyllostomidae). Global Ecology and Biogeography, 19, 200 – 211. https://doi.org/10.1111/j.1466-8238.2009.00503.x | |
dc.identifier.citedreference | Voss, R. S., Fleck, D. W., Strauss, R. E., Velazco, P. M., & Simmons, N. B. ( 2016 ). Roosting ecology of Amazonian bats: Evidence for guild structure in hyperdiverse mammalian communities. American Museum Novitates, 3870, 1 – 43. https://doi.org/10.1206/3870.1 | |
dc.identifier.citedreference | Warren, D. L., Cardillo, M., Rosauer, D. F., & Bolnick, D. I. ( 2014 ). Mistaking geography for biology: Inferring processes from species distributions. Trends in Ecology and Evolution, 29, 572 – 580. https://doi.org/10.1016/j.tree.2014.08.003 | |
dc.identifier.citedreference | Webb, C. O. ( 2000 ). Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. The American Naturalist, 156, 145 – 155. https://doi.org/10.1086/303378 | |
dc.identifier.citedreference | Weir, J. T., & Price, T. D. ( 2011 ). Limits to speciation inferred from times to secondary sympatry and ages of hybridizing species along a latitudinal gradient. The American Naturalist, 177, 462 – 469. https://doi.org/10.1086/658910 | |
dc.identifier.citedreference | Adams, R. A., & Thibault, K. M. ( 2006 ). Temporal resource partitioning by bats at water holes. Journal of Zoology, 270, 466 – 472. https://doi.org/10.1111/j.1469-7998.2006.00152.x | |
dc.identifier.citedreference | Adler, P. B., HilleRisLambers, J., & Levine, J. M. ( 2007 ). A niche for neutrality. Ecology Letters, 10, 95 – 104. https://doi.org/10.1111/j.1461-0248.2006.00996.x | |
dc.identifier.citedreference | Aguirre, L. F., Herrel, A., van Damme, R., & Matthysen, E. ( 2002 ). Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community. Proceedings of the Royal Society B: Biological Sciences, 269, 1271 – 1278. https://doi.org/10.1098/rspb.2002.2011 | |
dc.identifier.citedreference | Anacker, B. L., & Strauss, S. Y. ( 2014 ). The geography and ecology of plant speciation: Range overlap and niche divergence in sister species. Proceedings of the Royal Society B: Biological Sciences, 281, 20132980. https://doi.org/10.1098/rspb.2013.2980 | |
dc.identifier.citedreference | Barraclough, T. G., & Vogler, A. P. ( 2000 ). Detecting the geographical pattern of speciation from species‐level phylogenies. The American Naturalist, 155, 419 – 434. | |
dc.identifier.citedreference | Bengtsson, J. ( 1989 ). Interspecific competition increases local extinction rate in a metapopulation system. Nature, 340, 713 – 715. https://doi.org/10.1038/340713a0 | |
dc.identifier.citedreference | Brown, W. L. Jr., & Wilson, E. O. ( 1956 ). Character displacement. Systematic Zoology, 5, 49 – 64. https://doi.org/10.2307/2411924 | |
dc.identifier.citedreference | Cardillo, M., & Warren, D. L. ( 2016 ). Analysing patterns of spatial and niche overlap among species at multiple resolutions. Global Ecology and Biogeography, 25, 951 – 963. https://doi.org/10.1111/geb.12455 | |
dc.identifier.citedreference | Cavender‐Bares, J., Kozak, K. H., Fine, P. V. A., & Kembel, S. W. ( 2009 ). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693 – 715. https://doi.org/10.1111/j.1461-0248.2009.01314.x | |
dc.identifier.citedreference | Chesson, P. L. ( 1986 ). Environmental variation and the coexistence of species. In J. Diamond & T. J. Case (Eds), Community ecology (pp. 240 – 256 ). New York, NY: Harper and Row. | |
dc.identifier.citedreference | Chesson, P. ( 2000 ). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343 – 366. https://doi.org/10.1146/annurev.ecolsys.31.1.343 | |
dc.identifier.citedreference | Colwell, R. K., & Lees, D. C. ( 2000 ). The mid‐domain effect: Geometric constraints on the geography of species richness. Trends in Ecology and Evolution, 15, 70 – 76. https://doi.org/10.1016/S0169-5347(99)01767-X | |
dc.identifier.citedreference | Connell, J. H. ( 1972 ). Interactions on marine rocky intertidal shores. Annual Review of Ecology and Systematics, 3, 169 – 192. https://doi.org/10.1146/annurev.es.03.110172.001125 | |
dc.identifier.citedreference | Corcoran, A. J., & Conner, W. E. ( 2014 ). Bats jamming bats: Food competition through sonar interference. Science, 346, 745 – 747. https://doi.org/10.1126/science.1259512 | |
dc.identifier.citedreference | Curtis, A. A., & Simmons, N. B. ( 2017 ). Unique turbinal morphology in horseshoe bats (Chiroptera: Rhinolophidae). The Anatomical Record, 300, 309 – 325. https://doi.org/10.1002/ar.23516 | |
dc.identifier.citedreference | Dumont, E. R. ( 2004 ). Patterns of diversity in cranial shape among plant‐visiting bats. Acta Chiropterologica, 6, 59 – 74. https://doi.org/10.3161/001.006.0105 | |
dc.identifier.citedreference | Dumont, E. R., Dávalos, L. M., Goldberg, A., Santana, S. E., Rex, K., & Voigt, C. C. ( 2012 ). Morphological innovation, diversification and invasion of a new adaptive zone. Proceedings of the Royal Society B: Biological Sciences, 279, 1797 – 1805. https://doi.org/10.1098/rspb.2011.2005 | |
dc.identifier.citedreference | Dunson, W., & Travis, J. ( 1991 ). The role of abiotic factors in community organization. The American Naturalist, 138, 1067 – 1091. https://doi.org/10.1086/285270 | |
dc.identifier.citedreference | Estrada‐Villegas, S., McGill, B. J., & Kalko, E. K. V. ( 2012 ). Climate, habitat & species interactions at different scales determine the structure of a Neotropical bat community. Ecology, 93, 1183 – 1193. https://doi.org/10.1890/11-0275.1 | |
dc.identifier.citedreference | Fenton, M. B., & Thomas, D. W. ( 1980 ). Dry‐season overlap in activity patterns, habitat use & prey selection by sympatric African insectivorous bats. Biotropica, 12, 81 – 90. https://doi.org/10.2307/2387723 | |
dc.identifier.citedreference | Findley, J. S., & Black, H. A. L. ( 1983 ). Morphological and dietary structuring of a Zambian insectivorous bat community. Ecology, 64, 625 – 630. https://doi.org/10.2307/1937180 | |
dc.identifier.citedreference | Fitzpatrick, B. M., & Turelli, M. ( 2006 ). The geography of mammalian speciation: Mixed signals from phylogenies and range maps. Evolution, 60, 601 – 615. https://doi.org/10.1111/j.0014-3820.2006.tb01140.x | |
dc.identifier.citedreference | Fleming, T. H. ( 1986 ). Opportunism versus specialization: The evolution of feeding strategies in frugivorous bats. In A. Estrada & T. H. Fleming (Eds), Frugivores and seed dispersal (pp. 105 – 118 ). Dordrecht, Netherlands: Dr W. Junk Publishers. https://doi.org/10.1007/978-94-009-4812-9 | |
dc.identifier.citedreference | Graham, C. H., & Fine, P. V. A. ( 2008 ). Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time. Ecology Letters, 11, 1265 – 1277. https://doi.org/10.1111/j.1461-0248.2008.01256.x | |
dc.identifier.citedreference | Grant, P. R., & Grant, B. R. ( 1997 ). Genetics and the origin of bird species. Proceedings of the National Academy of Sciences of the United States of America, 94, 7768 – 7775. https://doi.org/10.1073/pnas.94.15.7768 | |
dc.identifier.citedreference | Grossenbacher, D., Briscoe Runquist, R., Goldberg, E. E., & Brandvain, Y. ( 2015 ). Geographic range size is predicted by plant mating system. Ecology Letters, 18, 706 – 713. https://doi.org/10.1111/ele.12449 | |
dc.identifier.citedreference | Hadfield, J. D. ( 2010 ). MCMC methods for multi‐response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33, 1 – 22. | |
dc.identifier.citedreference | Hadfield, J. D., & Nakagawa, S. ( 2010 ). General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi‐trait models for continuous and categorical characters. Journal of Evolutionary Biology, 23, 494 – 508. https://doi.org/10.1111/j.1420-9101.2009.01915.x | |
dc.identifier.citedreference | Heithaus, E. R., Fleming, T. H., & Opler, P. A. ( 1975 ). Foraging patterns and resource utilization in seven species of bats in a seasonal tropical forest. Ecology, 56, 841 – 854. https://doi.org/10.2307/1936295 | |
dc.identifier.citedreference | Henry, M., Barrière, P., Gautier‐Hion, A., & Colyn, M. ( 2004 ). Species composition, abundance and vertical stratification of a bat community (Megachiroptera: Pteropodidae) in a West African rain forest. Journal of Tropical Ecology, 20, 21 – 29. https://doi.org/10.1017/S0266467404006145 | |
dc.identifier.citedreference | IUCN. ( 2016 ) The IUCN red list of threatened species. Version 2016‐2. | |
dc.identifier.citedreference | Jones, K. E., Bininda‐Emonds, O. R. P., & Gittleman, J. L. ( 2005 ). Bats, clocks & rocks: Diversification patterns in Chiroptera. Evolution, 59, 2243 – 2255. https://doi.org/10.1111/j.0014-3820.2005.tb00932.x | |
dc.identifier.citedreference | Jønsson, K. A., Tøttrup, A. P., Borregaard, M. K., Keith, S. A., Rahbek, C., & Thorup, K. ( 2016 ). Tracking animal dispersal: From individual movement to community assembly and global range dynamics. Trends in Ecology and Evolution, 31, 204 – 214. https://doi.org/10.1016/j.tree.2016.01.003 | |
dc.identifier.citedreference | Kingston, T., Jones, G., Zubaid, A., & Kunz, T. H. ( 2000 ). Resource partitioning in rhinolophoid bats revisited. Oecologia, 124, 332 – 342. https://doi.org/10.1007/PL00008866 | |
dc.identifier.citedreference | Kingston, T., & Rossiter, S. J. ( 2004 ). Harmonic‐hopping in Wallacea’s bats. Nature, 429, 654 – 657. https://doi.org/10.1038/nature02487 | |
dc.identifier.citedreference | Kneitel, J. M., & Chase, J. M. ( 2004 ). Trade‐offs in community ecology: Linking spatial scales and species coexistence. Ecology Letters, 7, 69 – 80. https://doi.org/10.1046/j.1461-0248.2003.00551.x | |
dc.identifier.citedreference | Kronfeld‐Schor, N., & Dayan, T. ( 2003 ). Partitioning of time as an ecological resource. Annual Review of Ecology, Evolution & Systematics, 34, 153 – 181. https://doi.org/10.1146/annurev.ecolsys.34.011802.132435 | |
dc.identifier.citedreference | Leibold, M. A., & McPeek, M. A. ( 2006 ). Coexistence of the niche and neutral perspectives in community ecology. Ecology, 87, 1399 – 1410. https://doi.org/10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2 | |
dc.identifier.citedreference | Lessard, J. P., Belmaker, J., Myers, J. A., Chase, J. M., & Rahbek, C. ( 2012 ). Inferring local ecological processes amid species pool influences. Trends in Ecology and Evolution, 27, 600 – 607. https://doi.org/10.1016/j.tree.2012.07.006 | |
dc.identifier.citedreference | Louthan, A. M., Doak, D. F., & Angert, A. L. ( 2015 ). Where and when do species interactions set range limits? Trends in Ecology and Evolution, 30, 780 – 792. https://doi.org/10.1016/j.tree.2015.09.011 | |
dc.identifier.citedreference | McCain, C. M. ( 2007a ). Area and mammalian elevational diversity. Ecology, 88, 76 – 86. https://doi.org/10.1890/0012-9658(2007)88[76:AAMED]2.0.CO;2 | |
dc.identifier.citedreference | McCain, C. M. ( 2007b ). Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecology and Biogeography, 16, 1 – 13. https://doi.org/10.1111/j.1466-8238.2006.00263.x | |
dc.identifier.citedreference | Mcintire, E. J. B., & Fajardo, A. ( 2014 ). Facilitation as a ubiquitous driver of biodiversity. New Phytologist, 201, 403 – 416. https://doi.org/10.1111/nph.12478 | |
dc.identifier.citedreference | McPeek, M. A., & Brown, J. M. ( 2000 ). Building a regional species pool: Diversification of the Enallagma damselflies in eastern North America. Ecology, 81, 904 – 920. https://doi.org/10.1890/0012-9658(2000)081[0904:BARSPD]2.0.CO;2 | |
dc.identifier.citedreference | Moreno, C., Arita, H., & Solis, L. ( 2006 ). Morphological assembly mechanisms in Neotropical bat assemblages and ensembles within a landscape. Oecologia, 149, 133 – 140. https://doi.org/10.1007/s00442-006-0417-0 | |
dc.identifier.citedreference | Nogueira, M. R., Peracchi, A. L., & Monteiro, L. R. ( 2009 ). Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Functional Ecology, 23, 715 – 723. https://doi.org/10.1111/j.1365-2435.2009.01549.x | |
dc.identifier.citedreference | Norberg, U. M., & Rayner, J. M. V. ( 1987 ). Ecological morphology and flight in bats (Mammalia; Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society B: Biological Sciences, 316, 335 – 427. https://doi.org/10.1098/rstb.1987.0030 | |
dc.identifier.citedreference | Nowak, M. D. ( 1994 ). Walker’s bats of the world. Baltimore, MD: Johns Hopkins University Press. | |
dc.identifier.citedreference | Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., … Kassem, K. R. ( 2001 ). Terrestrial ecoregions of the world: A new map of life on Earth. BioScience, 51, 933 – 938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 | |
dc.identifier.citedreference | Phillimore, A. B., Orme, C. D. L., Thomas, G. H., Blackburn, T. M., Bennett, P. M., Gaston, K. J., & Owens, I. P. F. ( 2008 ). Sympatric speciation in birds is rare: Insights from range data and simulations. The American Naturalist, 171, 646 – 657. https://doi.org/10.1086/587074 | |
dc.identifier.citedreference | Pigot, A. L., & Tobias, J. A. ( 2013 ). Species interactions constrain geographic range expansion over evolutionary time. Ecology Letters, 16, 330 – 338. https://doi.org/10.1111/ele.12043 | |
dc.identifier.citedreference | Pigot, A. L., & Tobias, J. A. ( 2014 ). Dispersal and the transition to sympatry in vertebrates. Proceedings of the Royal Society B: Biological Sciences, 282, 20141929. https://doi.org/10.1098/rspb.2014.1929 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.