Show simple item record

ULF Wave‐Associated Density Irregularities and Scintillation at the Equator

dc.contributor.authorYizengaw, E.
dc.contributor.authorZesta, E.
dc.contributor.authorMoldwin, M. B.
dc.contributor.authorMagoun, M.
dc.contributor.authorTripathi, N. K.
dc.contributor.authorSurussavadee, C.
dc.contributor.authorBamba, Z.
dc.date.accessioned2018-07-13T15:46:16Z
dc.date.available2019-08-01T19:53:23Zen
dc.date.issued2018-06-16
dc.identifier.citationYizengaw, E.; Zesta, E.; Moldwin, M. B.; Magoun, M.; Tripathi, N. K.; Surussavadee, C.; Bamba, Z. (2018). "ULF Wave‐Associated Density Irregularities and Scintillation at the Equator." Geophysical Research Letters 45(11): 5290-5298.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/144582
dc.description.abstractThis paper presents independent multi‐instrument observations that address the physical mechanisms of how ultralow‐frequency (ULF) wave‐associated electric fields initiate ionospheric density fluctuation and scintillation at the equator. Since the magnetic field at the equator is entirely embedded in a relatively high‐collision and high‐conductivity medium, the condition may not be possible for the geomagnetic field to fluctuate due to ULF wave activity. This implies that the fluctuating electric field at the equator may not be produced through equatorial dynamo action due to fluctuating magnetic fields. Instead, the electric field penetrates from high latitudes and produces fluctuating magnetic field as well as modulates the vertical drift and hence causes the density to fluctuate at the equatorial region. We demonstrate this by estimating the ULF associated fluctuating electric field at high latitudes and at the equatorial region by applying the appropriate attenuation factor as it penetrates to lower latitudes. The periodicity of both electric field and density fluctuations appears to be between 6 and 9 min, which is a typical period of ULF waves in the Pc5 range. Because of its large amplitude and long periods compared to other ULF wave frequency bands, the Pc5 wave‐associated electric field, which can even be estimated using magnetograms with low sensitivity and low sampling rate (e.g., 1 min), can easily penetrate to the lower latitude region and produce significant ionospheric density fluctuations that can be strong enough to create scintillation at the equatorial region.Plain Language SummaryThe ultralow‐frequency (ULF) wave, which is believed to be generated by strong solar wind dynamic pressure at the magnetopause, can penetrate to the ionosphere and modulate high‐latitude electric field that can penetrate to equatorial latitudes and cause density irregularities in the ionosphere. Especially in the dusk to midnight local time sector, when the background density is weaker and can easily be driven up and down by small magnitude of fluctuating electric field (vertical drift), the density fluctuation becomes stronger. Such density fluctuations create favorable conditions for the creation of rapid amplitude and phase fluctuations of radio signals, which affects several technological systems such as over the horizon high‐frequency radio communication outage and increased Global Navigation Satellite System navigation errors. Thus, ionospheric density fluctuations are as much an engineering concern as they are a scientific quest, and hence understanding the physics behind the contribution of ULF wave power for the formation of small‐scale ionospheric density fluctuations is very important to develop a model that can accurately capture the structure and dynamics of the global low‐latitude ionospheric irregularities.Key PointsULF modulates high-latitude electric fieldElectric field penetrates from high to low latitudesFluctuating electric field causes scintillation at the equator
dc.publisherWiley Periodicals, Inc.
dc.subject.otherULF wave
dc.subject.otherelectric field
dc.subject.otherscintillation
dc.titleULF Wave‐Associated Density Irregularities and Scintillation at the Equator
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144582/1/grl57466.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144582/2/grl57466_am.pdf
dc.identifier.doi10.1029/2018GL078163
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceVikramkumar, B. T., Rao, P. B., Viswanathan, K. S., & Reddy, C. A. ( 1987 ). Electric fields and currents in the equatorial electrojet deduced from VHF radar observations—III. Comparison of observed Δ H values with those estimated from measured electric fields. Journal of Atmospheric and Terrestrial Physics, 49 ( 2 ), 201 – 207. https://doi.org/10.1016/0021‐9169(87)90055‐9
dc.identifier.citedreferenceHysell, D. L., Kelley, M. C., Swartz, W. E., & Woodman, R. F. ( 1990 ). Seeding and layering of equatorial spread F by gravity waves. Journal of Geophysical Research, 95 ( A10 ), 17,253 – 17,260. https://doi.org/10.1029/JA095iA10p17253
dc.identifier.citedreferenceKikuchi, T. ( 2014 ). Transmission line model for the near‐instantaneous transmission of the ionospheric electric field and currents to the equator. Journal of Geophysical Research: Space Physics, 119, 1131 – 1156. https://doi.org/10.1002/2013JA019515
dc.identifier.citedreferenceKikuchi, T., & Araki, T. ( 1979 ). Horizontal transmission of the polar electric field to the equator. Journal of Atmospheric and Terrestrial Physics, 41 ( 9 ), 927 – 936. https://doi.org/10.1016/0021‐9169(79)90094‐1
dc.identifier.citedreferenceKikuchi, T., Lühr, H., Schlegel, K., Tachihara, H., Shinohara, M., & Kitamura, T.‐I. ( 2000 ). Penetration of auroral electric fields to the equator during a substorm. Journal of Geophysical Research, 105 ( A10 ), 23,251 – 23,261. https://doi.org/10.1029/2000JA900016
dc.identifier.citedreferenceLiu, J. Y., & Berkey, F. T. ( 1994 ). Phase relationships between total electron content variations, Doppler velocity oscillations and geomagnetic pulsations. Journal of Geophysical Research, 99 ( A9 ), 17,539 – 17,545. https://doi.org/10.1029/94JA00869
dc.identifier.citedreferenceLiu, J. Y., Huang, Y. N., & Berkey, F. T. ( 1993 ). The phase relationship between ULF geomagnetic pulsations and HF Doppler frequency shift oscillations on March 24, 1991. Journal of Geomagnetism and Geoelectricity, 45 ( 1 ), 109 – 114. https://doi.org/10.5636/jgg.45.109
dc.identifier.citedreferenceLove, J. J., & Chulliat, A. ( 2013 ). An international network of magnetic observatories. Eos, Transactions American Geophysical Union, 94 ( 42 ), 373 – 374. https://doi.org/10.1002/2013EO420001
dc.identifier.citedreferenceMotoba, T., Kikuchi, T., Lühr, H., Tachihara, H., Kitamura, T.‐I., Hayashi, K., & Okuzawa, T. ( 2002 ). Global Pc5 caused by a DP 2‐type ionospheric current system. Journal of Geophysical Research, 107 ( A2 ), 1032. https://doi.org/10.1029/2001JA900156
dc.identifier.citedreferencePatel, V. L., & Lagos, P. ( 1985 ). Low‐frequency fluctuations of the electric field in the equatorial ionosphere. Nature, 313 ( 6003 ), 559 – 560. https://doi.org/10.1038/313559a0
dc.identifier.citedreferencePilipenko, V., Belakhovsky, V., Kozlovsky, A., Fedorov, E., & Kauristie, K. ( 2014 ). ULF wave modulation of the ionospheric parameters: Radar and magnetometer observations. Journal of Atmospheric and Solar ‐ Terrestrial Physics, 108, 68 – 76. https://doi.org/10.1016/j.jastp.2013.12.015
dc.identifier.citedreferencePilipenko, V., Belakhovsky, V., Murr, D., Fedorov, E., & Engebretson, M. ( 2014 ). Modulation of total electron content by ULF Pc5 waves. Journal of Geophysical Research: Space Physics, 119, 4358 – 4369. https://doi.org/10.1002/2013JA019594
dc.identifier.citedreferencePoole, A. W. V., & Sutcliffe, P. R. ( 1987 ). Mechanisms for observed total electron content pulsations at mid latitudes. Journal of Atmospheric and Terrestrial Physics, 49 ( 3 ), 231 – 236. https://doi.org/10.1016/0021‐9169(87)90058‐4
dc.identifier.citedreferencePoole, A. W. V., Sutcliffe, P. R., & Walker, A. D. M. ( 1988 ). The relationship between ULF geomagnetic pulsations and ionospheric Doppler oscillations: Derivation of a model. Journal of Geophysical Research, 93 ( A12 ), 14,656 – 14,664. https://doi.org/10.1029/JA093iA12p14656
dc.identifier.citedreferenceReddy, C. A., Ravindran, S., Viswanathan, K. S., Murthy, B. V. K., Rao, D. R. K., & Araki, T. ( 1994 ). Observations of Pc5 micropulsation‐related electric field oscillations in equatorial ionosphere. Annales de Geophysique, 12 ( 6 ), 565 – 573. https://doi.org/10.1007/s00585‐994‐0565‐7
dc.identifier.citedreferenceSultan, P. J. ( 1996 ). Linear theory and modeling of the Rayleigh‐Taylor instability leading to the occurrence of equatorial spread‐F. Journal of Geophysical Research, 101, 26,875 – 26,891.
dc.identifier.citedreferenceVorontsova, E., Pilipenko, V., Fedorov, E., Sinha, A. K., & Vichare, G. ( 2016 ). Modulation of total electron content by global Pc5 waves at low latitudes. Advances in Space Research, 57 ( 1 ), 309 – 319. https://doi.org/10.1016/j.asr.2015.10.041
dc.identifier.citedreferenceYeoman, T. K., Lester, M., Orr, D., & Luehr, H. ( 1990 ). Ionospheric boundary conditions of hydromagnetic waves—The dependence on azimuthal wavenumber and a case study. Planetary and Space Science, 38 ( 10 ), 1315 – 1325. https://doi.org/10.1016/0032‐0633(90)90134‐C
dc.identifier.citedreferenceYizengaw, E., & Moldwin, M. B. ( 2009 ). African Meridian B ‐field Education and Research (AMBER) array. Earth, Moon and Planets, 104 ( 1‐4 ), 237 – 246. https://doi.org/10.1007/s11038‐008‐9287‐2
dc.identifier.citedreferenceYizengaw, E., Moldwin, M. B., Mebrahtu, A., Damtie, B., Zesta, E., Valladares, C. E., & Doherty, P. H. ( 2011 ). Comparison of storm time equatorial ionospheric electrodynamics in the African and American sectors. Journal of Atmospheric and Solar‐Terrestrial Physics, 73 ( 1 ), 156 – 163. https://doi.org/10.1016/j.jastp.2010.08.008
dc.identifier.citedreferenceYizengaw, E., Moldwin, M. B., Zesta, E., Biouele, C. M., Damtie, B., Mebrahtu, A., et al. ( 2014 ). The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors. Annales de Geophysique, 32 ( 3 ), 231 – 238. https://doi.org/10.5194/angeo‐32‐231‐2014
dc.identifier.citedreferenceYizengaw, E., Moldwin, M. B., Zesta, E., Magoun, M., Pradipta, R., Biouele, C. M., et al. ( 2016 ). Response of equatorial ionosphere to the geomagnetic DP 2 current system. Geophysical Research Letters, 43, 7364 – 7372. https://doi.org/10.1002/2016GL070090
dc.identifier.citedreferenceYizengaw, E., Zesta, E., Biouele, C. M., Moldwin, M. B., Boudouridis, A., Damtie, B., et al. ( 2013 ). Observations of ULF wave related equatorial electrojet fluctuations. Journal of Atmospheric and Solar‐Terrestrial Physics, 103, 157 – 168. https://doi.org/10.1016/j.jastp.2013.03.015
dc.identifier.citedreferenceYizengaw, E., Zesta, E., Moldwin, M. B., Damtie, B., Mebrahtu, A., Valladares, C. E., & Pfaff, R. F. ( 2012 ). Longitudinal differences of ionospheric vertical density distribution and equatorial electrodynamics. Journal of Geophysical Research, 117, A07312. https://doi.org/10.1029/2011JA017454
dc.identifier.citedreferenceAnderson, D., Anghel, A., Yumoto, K., Ishitsuka, M., & Kudeki, E. ( 2002 ). Estimating daytime vertical E x B drift velocities in the equatorial F ‐region using ground‐based magnetometer observations. Geophysical Research Letters, 29 ( 12 ), 1596. https://doi.org/10.1029/2001GL014562
dc.identifier.citedreferenceBasu, S., Basu, S., Rich, F. J., Groves, K. M., MacKenzie, E., Coker, C., et al. ( 2007 ). Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms. Journal of Geophysical Research, 112, A08308. https://doi.org/10.1029/2006JA012192
dc.identifier.citedreferenceChi, P. J., Russell, C. T., Raeder, J., Zesta, E., Yumoto, K., Kawano, H., et al. ( 2001 ). Propagation of the preliminary reverse impulse of sudden commencements to low latitudes. Journal of Geophysical Research, 106 ( A9 ), 18,857 – 18,864. https://doi.org/10.1029/2001JA900071
dc.identifier.citedreferenceGroves, K. M., Basu, S., Weber, E. J., Smitham, M., Kuenzler, H., Valladares, C. E., et al. ( 1997 ). Equatorial scintillation and systems support. Radio Science, 32 ( 5 ), 2047 – 2064. https://doi.org/10.1029/97RS00836
dc.identifier.citedreferenceHughes, W. J. ( 1974 ). The effect of the atmosphere and ionosphere on long period magnetospheric micropulsations. Planetary and Space Science, 22 ( 8 ), 1157 – 1172. https://doi.org/10.1016/0032‐0633(74)90001‐4
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.