Machine learning for heterogeneous catalyst design and discovery
dc.contributor.author | Goldsmith, Bryan R. | |
dc.contributor.author | Esterhuizen, Jacques | |
dc.contributor.author | Liu, Jin‐xun | |
dc.contributor.author | Bartel, Christopher J. | |
dc.contributor.author | Sutton, Christopher | |
dc.date.accessioned | 2018-07-13T15:46:17Z | |
dc.date.available | 2019-09-04T20:15:38Z | en |
dc.date.issued | 2018-07 | |
dc.identifier.citation | Goldsmith, Bryan R.; Esterhuizen, Jacques; Liu, Jin‐xun ; Bartel, Christopher J.; Sutton, Christopher (2018). "Machine learning for heterogeneous catalyst design and discovery." AIChE Journal 64(7): 2311-2323. | |
dc.identifier.issn | 0001-1541 | |
dc.identifier.issn | 1547-5905 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/144583 | |
dc.publisher | John Wiley & Sons | |
dc.subject.other | compressed sensing | |
dc.subject.other | machine learning | |
dc.subject.other | heterogeneous catalysis | |
dc.subject.other | computational catalysis | |
dc.subject.other | data mining | |
dc.title | Machine learning for heterogeneous catalyst design and discovery | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Chemical Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/144583/1/aic16198.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/144583/2/aic16198_am.pdf | |
dc.identifier.doi | 10.1002/aic.16198 | |
dc.identifier.source | AIChE Journal | |
dc.identifier.citedreference | Natarajan SK, Behler J. Neural network molecular dynamics simulations of solidâ liquid interfaces: water at lowâ index copper surfaces. Phys Chem Chem Phys. 2016; 18 ( 41 ): 28704. | |
dc.identifier.citedreference | Yao K, Herr JE, Toth DW, Mckintyre R, Parkhill J. The TensorMolâ 0.1 model chemistry: a neural network augmented with longâ range physics. Chem Sci. 2018; 9 ( 8 ): 2261. | |
dc.identifier.citedreference | Campbell CT. The degree of rate control: a powerful tool for catalysis research. ACS Catal. 2017; 7 ( 4 ): 2770. | |
dc.identifier.citedreference | Hratchian HP, Schlegel HB. Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In Dykstra C, Frenking G, Kim K, Scuseria G (editors.), Theory and Applications of Computational Chemistry: The first forty years. Amsterdam: Elsevier, 2005: 195. | |
dc.identifier.citedreference | Heyden A, Bell AT, Keil FJ. Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J Chem Phys. 2005; 123 ( 22 ): 224101. | |
dc.identifier.citedreference | Schlegel HB. Exploring potential energy surfaces for chemical reactions: an overview of some practical methods. J Comput Chem. 2003; 24 ( 12 ): 1514. | |
dc.identifier.citedreference | Zimmerman PM. Singleâ ended transition state finding with the growing string method. J Comput Chem. 2015; 36 ( 9 ): 601. | |
dc.identifier.citedreference | Jafari M, Zimmerman PM. Reliable and efficient reaction path and transition state finding for surface reactions with the growing string method. J Comput Chem. 2017; 38 ( 10 ): 645. | |
dc.identifier.citedreference | Sun K, Zhao Y, Su Hâ Y, Li Wâ X. Force reversed method for locating transition states. Theor Chem Acc. 2012; 131 ( 2 ): 1118. | |
dc.identifier.citedreference | Peters B. Reaction Rate Theory and Rare Events, 1 ed. Amsterdam, Netherlands: Elsevier Science, 2017. | |
dc.identifier.citedreference | Peterson AA. Acceleration of saddleâ point searches with machine learning. J Chem Phys. 2016; 145 ( 7 ): 074106. | |
dc.identifier.citedreference | Koistinen Oâ P, Dagbjartsdóttir FB, à sgeirsson V, Vehtari A, Jónsson H. Nudged elastic band calculations accelerated with Gaussian process regression. J Chem Phys. 2017; 147 ( 15 ): 152720. | |
dc.identifier.citedreference | MartÃnezâ Núñez E. An automated method to find transition states using chemical dynamics simulations. J Comput Chem. 2015; 36 ( 4 ): 222. | |
dc.identifier.citedreference | Zimmerman PM. Navigating molecular space for reaction mechanisms: an efficient, automated procedure. Mol Simul. 2015; 41 ( 1â 3 ): 43. | |
dc.identifier.citedreference | Ulissi ZW, Medford AJ, Bligaard T, Nørskov JK. To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat Commun. 2017; 8: 14621. | |
dc.identifier.citedreference | Gu GH, Plechac P, Vlachos DG. Thermochemistry of gasâ phase and surface species via LASSOâ assisted subgraph selection. React Chem Eng. 2018. | |
dc.identifier.citedreference | Krallinger M, Rabal O, Lourenço A, Oyarzabal J, Valencia A. Information retrieval and text mining technologies for chemistry. Chem Rev. 2017; 117 ( 12 ): 7673. | |
dc.identifier.citedreference | Kim E, Huang K, Tomala A, Matthews S, Strubell E, Saunders A, McCallum A, Olivetti E. Machineâ learned and codified synthesis parameters of oxide materials. Sci Data. 2017; 4: 170127. | |
dc.identifier.citedreference | Kim E, Huang K, Saunders A, McCallum A, Ceder G, Olivetti E. Materials synthesis insights from scientific literature via text extraction and machine learning. Chem Mater. 2017; 29 ( 21 ): 9436. | |
dc.identifier.citedreference | Swain MC, Cole JM. ChemDataExtractor: A toolkit for automated extraction of chemical information from the scientific literature. J Chem Inf Model. 2016; 56 ( 10 ): 1894. | |
dc.identifier.citedreference | Report of the basic research needs workshop for catalysis science. Basic Research Needs for Catalysis Science to Transform Energy Technologies; US DOE Office of Science (United States), 2018: 57. | |
dc.identifier.citedreference | Timoshenko J, Keller KR, Frenkel AI. Determination of bimetallic architectures in nanometerâ scale catalysts by combining molecular dynamics simulations with xâ ray absorption spectroscopy. J Chem Phys. 2017; 146 ( 11 ): 114201. | |
dc.identifier.citedreference | Kalinin SV, Sumpter BG, Archibald RK. Bigâ deepâ smart data in imaging for guiding materials design. Nat Mater. 2015; 14 ( 10 ): 973. | |
dc.identifier.citedreference | Timoshenko J, Lu D, Lin Y, Frenkel AI. Supervised machineâ learningâ based determination of threeâ dimensional structure of metallic nanoparticles. J Phys Chem Lett. 2017; 8 ( 20 ): 5091. | |
dc.identifier.citedreference | Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D. Mastering the game of go without human knowledge. Nature. 2017; 550 ( 7676 ): 354. | |
dc.identifier.citedreference | Ramprasad R, Batra R, Pilania G, Mannodiâ Kanakkithodi A, Kim C. Machine learning in materials informatics: recent applications and prospects. Npj Comput Mater. 2017; 3 ( 1 ): 54. | |
dc.identifier.citedreference | Tabor DP, Roch LM, Saikin SK, Kreisbeck C, Sheberla D, Montoya JH, Dwaraknath S, Aykol M, Ortiz C, Tribukait H, Amadorâ Bedolla C, Brabec CJ, Maruyama B, Persson KA, Aspuruâ Guzik A. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat Rev Mater. 3;5: 2018. | |
dc.identifier.citedreference | Beck DA, Carothers JM, Subramanian VR, Pfaendtner J. Data science: accelerating innovation and discovery in chemical engineering. AIChE J. 2016; 62 ( 5 ): 1402. | |
dc.identifier.citedreference | Friedman J, Hastie T, Tibshirani R. The Elements of Statistical Learning, Vol. 1. Springer series in statistics, New York, 2001. | |
dc.identifier.citedreference | Kitchin JR. Machine learning in catalysis. Nat Catal. 2018; 1 ( 4 ): 230. | |
dc.identifier.citedreference | Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. Scikitâ learn: machine learning in python. J Mach Learn Res. 2011; 12: 2825. | |
dc.identifier.citedreference | Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X. TensorFlow: A System for Largeâ Scale Machine Learning, OSDI, 2016: 265. | |
dc.identifier.citedreference | Hjorth Larsen A, Jørgen Mortensen J, Blomqvist J, Castelli IE, Christensen R, DuÅ ak M, Friis J, Groves MN, Hammer B, Hargus C, Hermes ED, Jennings PC, Bjerre Jensen P, Kermode J, Kitchin JR, Leonhard Kolsbjerg E, Kubal J, Kaasbjerg K, Lysgaard S, Bergmann Maronsson J, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiøtz J, Schütt O, Strange M, Thygesen KS, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen KW. The Atomic Simulation Environmentâ A Python library for working with atoms. J Phys Condens Matter. 2017; 29 ( 27 ): 273002. | |
dc.identifier.citedreference | Mathew K, Montoya JH, Faghaninia A, Dwarakanath S, Aykol M, Tang H, Chu Iâ h, Smidt T, Bocklund B, Horton M, Dagdelen J, Wood B, Liu Zâ K, Neaton J, Ong SP, Persson K, Jain A. Atomate: a highâ level interface to generate, execute, and analyze computational materials science workflows. Comput Mater Sci. 2017; 139: 140. | |
dc.identifier.citedreference | Ghiringhelli LM, Carbogno C, Levchenko S, Mohamed F, Huhs G, Lüders M, Oliveira M, Scheffler M. Towards efficient data exchange and sharing for bigâ data driven materials science: metadata and data formats. Npj Comput Mater. 2017; 3 ( 1 ): 46. | |
dc.identifier.citedreference | O’Mara J, Meredig B, Michel K. Materials data infrastructure: a case study of the citrination platform to examine data import, storage, and access. JOM. 2016; 68 ( 8 ): 2031. | |
dc.identifier.citedreference | Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA. Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 2013; 1 ( 1 ): 011002. | |
dc.identifier.citedreference | Hummelshøj JS, Abildâ Pedersen F, Studt F, Bligaard T, Nørskov JK. CatApp: a web application for surface chemistry and heterogeneous catalysis. Angew Chem Int Ed. 2012; 124 ( 1 ): 278. | |
dc.identifier.citedreference | van Santen RA. Modern Heterogeneous Catalysis: An Introduction. Weinheim, Germany: John Wiley & Sons, 2017: 592. | |
dc.identifier.citedreference | Kalz KF, Kraehnert R, Dvoyashkin M, Dittmeyer R, Gläser R, Krewer U, Reuter K, Grunwaldt JD. Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. ChemCatChem. 2017; 9 ( 1 ): 17. | |
dc.identifier.citedreference | Goldsmith BR, Peters B, Johnson JK, Gates BC, Scott SL. Beyond ordered materials: understanding catalytic sites on amorphous solids. ACS Catal. 2017; 7 ( 11 ): 7543. | |
dc.identifier.citedreference | Gross EK, Dreizler RM. Density Functional Theory, Vol. 337. Berlin/Heidelberg, Germany: Springer Science & Business Media, 2013. | |
dc.identifier.citedreference | Carter EA. Challenges in modeling materials properties without experimental input. Science. 2008; 321 ( 5890 ): 800. | |
dc.identifier.citedreference | Ras Eâ J, Rothenberg G. Heterogeneous catalyst discovery using 21st century tools: a tutorial. RSC Adv. 2014; 4 ( 12 ): 5963. | |
dc.identifier.citedreference | Hattori T, Kito S. Neural network as a tool for catalyst development. Catal Today. 1995; 23 ( 4 ): 347. | |
dc.identifier.citedreference | Sasaki M, Hamada H, Kintaichi Y, Ito T. Application of a neural network to the analysis of catalytic reactions analysis of NO decomposition over Cu/ZSMâ 5 zeolite. Appl Catal A. 1995; 132 ( 2 ): 261. | |
dc.identifier.citedreference | Mueller T, Kusne AG, Ramprasad R. Machine learning in materials science: recent progress and emerging applications. Rev Comput Chem. 2016; 29: 186. | |
dc.identifier.citedreference | Rothenberg G. Data mining in catalysis: separating knowledge from garbage. Catal Today. 2008; 137 ( 1 ): 2. | |
dc.identifier.citedreference | Fernandez M, Barron H, Barnard AS. Artificial neural network analysis of the catalytic efficiency of platinum nanoparticles. RSC Adv. 2017; 7 ( 77 ): 48962. | |
dc.identifier.citedreference | Maldonado AG, Rothenberg G. Predictive modeling in homogeneous catalysis: a tutorial. Chem Soc Rev. 2010; 39 ( 6 ): 1891. | |
dc.identifier.citedreference | Janet JP, Kulik HJ. Resolving transition metal chemical space: feature selection for machine learning and structureâ property relationships. J Phys Chem A. 2017; 121 ( 46 ): 8939. | |
dc.identifier.citedreference | Janet JP, Chan L, Kulik HJ. Accelerating chemical discovery with machine learning: simulated evolution of spin crossover complexes with an artificial neural network. J Phys Chem Lett. 2018; 9 ( 5 ): 1064. | |
dc.identifier.citedreference | Bartók AP, Kondor R, Csányi G. On representing chemical environments. Phys Rev B. 2013; 87 ( 21 ): 184115. | |
dc.identifier.citedreference | Bartók AP, Kondor R, Csányi G. Erratum: on representing chemical environments [Phys. Rev. B 87, 184115 (2013)]. Phys Rev B. 2017; 96 ( 1 ): 019902. | |
dc.identifier.citedreference | Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli LM. SISSO: a compressedâ sensing method for systematically identifying efficient physical models of materials properties. arXiv preprint arXiv:1710.03319, 2017. | |
dc.identifier.citedreference | Senkan SM. Highâ throughput screening of solidâ state catalyst libraries. Nature. 1998; 394 ( 6691 ): 350. | |
dc.identifier.citedreference | Baumes L, Farrusseng D, Lengliz M, Mirodatos C. Using artificial neural networks to boost highâ throughput discovery in heterogeneous catalysis. Mol Inform. 2004; 23 ( 9 ): 767. | |
dc.identifier.citedreference | Baumes L, Serra J, Serna P, Corma A. Support vector machines for predictive modeling in heterogeneous catalysis: a comprehensive introduction and overfitting investigation based on two real applications. J Comb Chem. 2006; 8 ( 4 ): 583. | |
dc.identifier.citedreference | Cleve TV, Moniri S, Belok G, More KL, Linic S. Nanoscale engineering of efficient oxygen reduction electrocatalysts by tailoring the local chemical environment of Pt surface Sites. ACS Catal. 2017; 7 ( 1 ): 17. | |
dc.identifier.citedreference | Alonso DM, Wettstein SG, Dumesic JA. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev. 2012; 41 ( 24 ): 8075. | |
dc.identifier.citedreference | Yu W, Porosoff MD, Chen JG. Review of Ptâ based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev. 2012; 112 ( 11 ): 5780. | |
dc.identifier.citedreference | Andersen M, Medford AJ, Nørskov JK, Reuter K. Scalingâ relationâ based analysis of bifunctional catalysis: the case for homogeneous bimetallic alloys. ACS Catal. 2017; 7 ( 6 ): 3960. | |
dc.identifier.citedreference | Peters B, Scott SL. Single atom catalysts on amorphous supports: a quenched disorder perspective. J Chem Phys. 2015; 142 ( 10 ): 104708. | |
dc.identifier.citedreference | Jinnouchi R, Asahi R. Predicting catalytic activity of nanoparticles by a DFTâ aided machineâ learning algorithm. J Phys Chem Lett. 2017; 8 ( 17 ): 4279. | |
dc.identifier.citedreference | Li Z, Wang S, Chin WS, Achenie LE, Xin H. Highâ throughput screening of bimetallic catalysts enabled by machine learning. J Mater Chem A. 2017; 5 ( 46 ): 24131. | |
dc.identifier.citedreference | Ulissi ZW, Singh AR, Tsai C, Nørskov JK. Automated discovery and construction of surface phase diagrams using machine learning. J Phys Chem Lett. 2016; 7 ( 19 ): 3931. | |
dc.identifier.citedreference | van Santen RA. Molecular Catalytic Kinetics Concepts. Weinheim: WILEYâ VCH Verlag GmbH, 2010. | |
dc.identifier.citedreference | Greeley J. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu Rev Chem Biomol Eng. 2016; 7 ( 1 ): 605. | |
dc.identifier.citedreference | Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. Towards the computational design of solid catalysts. Nat Chem. 2009; 1 ( 1 ): 37. | |
dc.identifier.citedreference | Ulissi ZW, Tang MT, Xiao J, Liu X, Torelli DA, Karamad M, Cummins K, Hahn C, Lewis NS, Jaramillo TF, Chan K, Nørskov JK. Machineâ learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO 2 reduction. ACS Catal. 2017; 7 ( 10 ): 6600. | |
dc.identifier.citedreference | Peterson AA, Nørskov JK. Activity descriptors for CO 2 electroreduction to methane on transitionâ metal catalysts. J Phys Chem Lett. 2012; 3 ( 2 ): 251. | |
dc.identifier.citedreference | Torelli DA, Francis SA, Crompton JC, Javier A, Thompson JR, Brunschwig BS, Soriaga MP, Lewis NS. Nickelâ galliumâ catalyzed electrochemical reduction of CO 2 to highly reduced products at low overpotentials. ACS Catal. 2016; 6 ( 3 ): 2100. | |
dc.identifier.citedreference | Reuter K, Stampf C, Scheffler M. Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions. In: Yip S, editor. Handbook of Materials Modeling, Dordrecht: Springer, 2005: 149. | |
dc.identifier.citedreference | Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M. Big data of materials science: critical role of the descriptor. Phys Rev Lett. 2015; 114 ( 10 ): 105503. | |
dc.identifier.citedreference | Sinthika S, Waghmare UV, Thapa R. Structural and electronic descriptors of catalytic activity of grapheneâ based materials: firstâ principles theoretical analysis. Small. 2018;14(10):1703609. | |
dc.identifier.citedreference | Calleâ Vallejo F, Tymoczko J, Colic V, Vu QH, Pohl MD, Morgenstern K, Loffreda D, Sautet P, Schuhmann W, Bandarenka AS. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science. 2015; 350 ( 6257 ): 185. | |
dc.identifier.citedreference | Ma X, Xin H. Orbitalwise coordination number for predicting adsorption properties of metal nanocatalysts. Phys Rev Lett. 2017; 118 ( 3 ): 036101. | |
dc.identifier.citedreference | Xin H, Linic S. Communications: exceptions to the dâ band model of chemisorption on metal surfaces: the dominant role of repulsion between adsorbate states and metal dâ states. J Chem Phys. 2010; 132 ( 22 ): 221101. | |
dc.identifier.citedreference | Rupp M. Machine learning for quantum mechanics in a nutshell. Int J Quantum Chem. 2015; 115 ( 16 ): 1058. | |
dc.identifier.citedreference | Noh J, Kim J, Back S, Jung Y. Catalyst design using actively learned machine with nonâ ab initio input features towards CO 2 reduction reactions. arXiv preprint arXiv:1709.04576, 2017. | |
dc.identifier.citedreference | Takigawa I, Shimizu Kâ I, Tsuda K, Takakusagi S. Machineâ learning prediction of the dâ band center for metals and bimetals. RSC Adv. 2016; 6 ( 58 ): 52587. | |
dc.identifier.citedreference | Li Z, Ma X, Xin H. Feature engineering of machineâ learning chemisorption models for catalyst design. Catal Today. 2017; 280 ( Part 2 ): 232. | |
dc.identifier.citedreference | Wexler RB, Martirez JMP, Rappe AM. Chemical pressureâ driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning. J Am Chem Soc. 2018; 140 ( 13 ): 4678. | |
dc.identifier.citedreference | Pankajakshan P, Sanyal S, de Noord OE, Bhattacharya I, Bhattacharyya A, Waghmare U. Machine learning and statistical analysis for materials science: stability and transferability of fingerprint descriptors and chemical insights. Chem Mater. 2017; 29 ( 10 ): 4190. | |
dc.identifier.citedreference | Ghiringhelli LM, Vybiral J, Ahmetcik E, Ouyang R, Levchenko SV, Draxl C, Scheffler M. Learning physical descriptors for materials science by compressed sensing. New J Phys. 2017; 19 ( 2 ): 023017. | |
dc.identifier.citedreference | Bartel CJ, Sutton C, Goldsmith BR, Ouyang R, Musgrave CB, Ghiringhelli LM, Scheffler M. New tolerance factor to predict the stability of perovskite oxides and halides. arXiv preprint arXiv:1801.07700, 2018. | |
dc.identifier.citedreference | Corma A, Serra JM, Serna P, Moliner M. Integrating highâ throughput characterization into combinatorial heterogeneous catalysis: unsupervised construction of quantitative structure/property relationship models. J Catal. 2005; 232 ( 2 ): 335. | |
dc.identifier.citedreference | Ras Eâ J, McKay B, Rothenberg G. Understanding catalytic biomass conversion through data mining. Top Catal. 2010; 53 ( 15â 18 ): 1202. | |
dc.identifier.citedreference | Madaan N, Shiju NR, Rothenberg G. Predicting the performance of oxidation catalysts using descriptor models. Catal Sci Technol. 2016; 6 ( 1 ): 125. | |
dc.identifier.citedreference | Leonard KC, Bard AJ. Pattern recognition correlating materials properties of the elements to their kinetics for the hydrogen evolution reaction. J Am Chem Soc. 2013; 135 ( 42 ): 15885. | |
dc.identifier.citedreference | Ras Eâ J, Louwerse MJ, Rothenberg G. New tricks by very old dogs: predicting the catalytic hydrogenation of HMF derivatives using Slaterâ type orbitals. Catal Sci Technol. 2012; 2 ( 12 ): 2456. | |
dc.identifier.citedreference | OdabaŠı à , Günay ME, Yıldırım R. Knowledge extraction for water gas shift reaction over noble metal catalysts from publications in the literature between 2002 and 2012. Int J Hydrogen Energy. 2014; 39 ( 11 ): 5733. | |
dc.identifier.citedreference | Boley M, Goldsmith BR, Ghiringhelli LM, Vreeken J. Identifying consistent statements about numerical data with dispersionâ corrected subgroup discovery. Data Min Knowl Discov. 2017; 31 ( 5 ): 1391. | |
dc.identifier.citedreference | Herrera F, Carmona CJ, González P, Del Jesus MJ. An overview on subgroup discovery: foundations and applications. Knowl Inf Syst. 2011; 29 ( 3 ): 495. | |
dc.identifier.citedreference | Goldsmith BR, Boley M, Vreeken J, Scheffler M, Ghiringhelli LM. Uncovering structureâ property relationships of materials by subgroup discovery. New J Phys. 2017; 19 ( 1 ): 013031. | |
dc.identifier.citedreference | Shapeev AV. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model Sim. 2016; 14 ( 3 ): 1153. | |
dc.identifier.citedreference | Botu V, Batra R, Chapman J, Ramprasad R. Machine learning force fields: construction, validation, and outlook. J Phys Chem C. 2017; 121 ( 1 ): 511. | |
dc.identifier.citedreference | Brockherde F, Vogt L, Li L, Tuckerman ME, Burke K, Müller Kâ R. Bypassing the Kohnâ Sham equations with machine learning. Nat Commun. 2017; 8 ( 1 ): 872. | |
dc.identifier.citedreference | Schütt KT, Arbabzadah F, Chmiela S, Müller KR, Tkatchenko A. Quantumâ chemical insights from deep tensor neural networks. Nat Commun. 2017; 8: 13890. | |
dc.identifier.citedreference | Boes JR, Groenenboom MC, Keith JA, Kitchin JR. Neural network and ReaxFF comparison for Au properties. Int J Quantum Chem. 2016; 116 ( 13 ): 979. | |
dc.identifier.citedreference | Dolgirev PE, Kruglov IA, Oganov AR. Machine learning scheme for fast extraction of chemically interpretable interatomic potentials. AIP Adv. 2016; 6 ( 8 ): 085318. | |
dc.identifier.citedreference | Behler J. First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew Chem Int Ed. 2017; 56 ( 42 ): 12828. | |
dc.identifier.citedreference | Campbell CT, Peden CH. Oxygen vacancies and catalysis on ceria surfaces. Science. 2005; 309 ( 5735 ): 713. | |
dc.identifier.citedreference | Su Yâ Q, Filot IAW, Liu Jâ X, Tranca I, Hensen EJM. Charge transport over the defective CeO 2 (111) surface. Chem Mater. 2016; 28 ( 16 ): 5652. | |
dc.identifier.citedreference | Goldsmith BR, Sanderson ED, Ouyang R, Li Wâ X. COâ and NOâ Induced disintegration and redispersion of threeâ way catalysts rhodium, palladium, and platinum: an ab initio thermodynamics study. J Phys Chem C. 2014; 118 ( 18 ): 9588. | |
dc.identifier.citedreference | Su Yâ Q, Liu Jâ X, Filot IAW, Hensen EJM. Theoretical study of ripening mechanisms of Pd clusters on ceria. Chem Mater. 2017; 29 ( 21 ): 9456. | |
dc.identifier.citedreference | Boes JR, Kitchin JR. Neural network predictions of oxygen interactions on a dynamic Pd surface. Mol Simul. 2017; 43 ( 5â 6 ): 346. | |
dc.identifier.citedreference | Zhai H, Alexandrova AN. Fluxionality of catalytic clusters: when it matters and how to address it. ACS Catal. 2017; 7 ( 3 ): 1905. | |
dc.identifier.citedreference | Ouyang R, Xie Y, Jiang Dâ e. Global minimization of gold clusters by combining neural network potentials and the basinâ hopping method. Nanoscale. 2015; 7 ( 36 ): 14817. | |
dc.identifier.citedreference | Senftle TP, van Duin AC, Janik MJ. Methane activation at the Pd/CeO 2 interface. ACS Catal. 2017; 7 ( 1 ): 327. | |
dc.identifier.citedreference | Boes JR, Kitchin JR. Modeling segregation on AuPd(111) surfaces with density functional theory and Monte Carlo simulations. J Phys Chem C. 2017; 121 ( 6 ): 3479. | |
dc.identifier.citedreference | Zhai H, Alexandrova AN. Ensembleâ average representation of Pt clusters in conditions of catalysis accessed through GPU accelerated deep neural network fitting global optimization. J Chem Theory Comput. 2016; 12 ( 12 ): 6213. | |
dc.identifier.citedreference | Sun G, Sautet P. Metastable structures in cluster catalysis from firstâ principles: structural ensemble in reaction conditions and metastability triggered reactivity. J Am Chem Soc. 2018; 140 ( 8 ): 2812. | |
dc.identifier.citedreference | Liu Jâ X, Su Y, Filot IA, Hensen EJ. A linear scaling relation for CO oxidation on CeO 2 â supported Pd. J Am Chem Soc. 2018; 140 ( 13 ): 4580. | |
dc.identifier.citedreference | Sievers C, Noda Y, Qi L, Albuquerque EM, Rioux RM, Scott SL. Phenomena affecting catalytic reactions at solidâ liquid interfaces. ACS Catal. 2016; 6 ( 12 ): 8286. | |
dc.identifier.citedreference | Artrith N, Kolpak AM. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: a combination of DFT and accurate neural network potentials. Nano Lett. 2014; 14 ( 5 ): 2670. | |
dc.identifier.citedreference | Artrith N, Kolpak AM. Grand canonical molecular dynamics simulations of Cuâ Au nanoalloys in thermal equilibrium using reactive ANN potentials. Comput Mater Sci. 2015; 110: 20. | |
dc.identifier.citedreference | Chmiela S, Tkatchenko A, Sauceda HE, Poltavsky I, Schütt KT, Müller Kâ R. Machine learning of accurate energyâ conserving molecular force fields. Sci Adv. 2017; 3 ( 5 ): e1603015. | |
dc.identifier.citedreference | Li L, Snyder JC, Pelaschier IM, Huang J, Niranjan UN, Duncan P, Rupp M, Müller KR, Burke K. Understanding machineâ learned density functionals. Int J Quantum Chem. 2016; 116 ( 11 ): 819. | |
dc.identifier.citedreference | Peterson AA, Christensen R, Khorshidi A. Addressing uncertainty in atomistic machine learning. Phys Chem Chem Phys. 2017; 19 ( 18 ): 10978. | |
dc.identifier.citedreference | Hutchinson ML, Antono E, Gibbons BM, Paradiso S, Ling J, Meredig B. Overcoming data scarcity with transfer learning. arXiv preprint arXiv:1711.05099, 2017. | |
dc.identifier.citedreference | Khorshidi A, Peterson AA. Amp: a modular approach to machine learning in atomistic simulations. Comput Phys Commun. 2016; 207: 310. | |
dc.identifier.citedreference | Kolb B, Lentz LC, Kolpak AM. Discovering charge density functionals and structureâ property relationships with PROPhet: a general framework for coupling machine learning and firstâ principles methods. Sci Rep. 2017; 7 ( 1 ): 1192. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.