Show simple item record

Constraining the Potential Liquid Water Environment at Gale Crater, Mars

dc.contributor.authorRivera‐valentín, Edgard G.
dc.contributor.authorGough, Raina V.
dc.contributor.authorChevrier, Vincent F.
dc.contributor.authorPrimm, Katherine M.
dc.contributor.authorMartínez, German M.
dc.contributor.authorTolbert, Margaret
dc.date.accessioned2018-07-13T15:46:20Z
dc.date.available2019-07-01T14:52:17Zen
dc.date.issued2018-05
dc.identifier.citationRivera‐valentín, Edgard G. ; Gough, Raina V.; Chevrier, Vincent F.; Primm, Katherine M.; Martínez, German M. ; Tolbert, Margaret (2018). "Constraining the Potential Liquid Water Environment at Gale Crater, Mars." Journal of Geophysical Research: Planets 123(5): 1156-1167.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/144585
dc.description.abstractThe Mars Science Laboratory (MSL) Rover Environmental Monitoring Station (REMS) has now made continuous in situ meteorological measurements for several Martian years at Gale crater, Mars. Of importance in the search for liquid formation are REMS’ measurements of ground temperature and inâ air measurements of temperature and relative humidity, which is with respect to ice. Such data can constrain the surface and subsurface stability of brines. Here we use updated calibrations to REMS data and consistent relative humidity comparisons (i.e., with respect to liquid versus with respect to ice) to investigate the potential formation of surface and subsurface liquids throughout MSL’s traverse. We specifically study the potential for the deliquescence of calcium perchlorate. Our data analysis suggests that surface brine formation is not favored within the first 1648 sols as there are only two times (sols 1232 and 1311) when humidityâ temperature conditions were within error consistent with a liquid phase. On the other hand, modeling of the subsurface environment would support brine production in the shallow subsurface. Indeed, we find that the shallow subsurface for terrains with low thermal inertia (Î â ²300 J mâ 2 Kâ 1 sâ 1/2) may be occasionally favorable to brine formation through deliquescence. Terrains with Î â ²175 J mâ 2 Kâ 1 sâ 1/2 and albedos of â ³0.25 are the most apt to subsurface brine formation. Should brines form, they would occur around Ls 100°. Their predicted properties would not meet the Special nor Uncertain Region requirements, as such they would not be potential habitable environments to life as we know it.Plain Language SummaryThe Mars Science Laboratory (MSL) has now made continuous measurements of the local weather at Gale crater, Mars. Such measurements can help guide our search for the formation of liquid water on presentâ day Mars. Specifically, when the right temperature and humidity conditions are met, certain salts can take in water vapor from the atmosphere to produce liquids. Here we use data from MSL along with experimental results on the stability of a Marsâ relevant salt to search for time periods when liquids could potentially form at the surface. Additionally, we use simulations and MSL data to understand the potential to form such liquids in the subsurface. Our results suggest that surface formation of liquids is unlikely throughout MSL’s travels; however, the shallow subsurface may experience conditions that would allow for liquid formation. Not much liquid would form, though, and the properties of these liquids would not permit life as we know it to persist.Key PointsMeasured surface environmental conditions at Gale crater are not favorable to brine formation via deliquescence of calcium perchlorateLiquids may have formed in the shallow subsurface of low thermal inertia units within MSLâ traversed terrainsMSL may best find liquids in the subsurface of units with thermal inertia less than or equal to 175 J mâ 2 Kâ 1 sâ 1/2 and albedo > 0.25 around Ls 100°
dc.publisherWiley Periodicals, Inc.
dc.publisherNASA Technical Memorandum
dc.titleConstraining the Potential Liquid Water Environment at Gale Crater, Mars
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144585/1/jgre20830-sup-0001-supinfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144585/2/jgre20830_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144585/3/jgre20830.pdf
dc.identifier.doi10.1002/2018JE005558
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferencePollack, J. B., Haberle, R. M., & Murphy, J. R. ( 1990 ). Simulations of the general circulation of the Martian atmosphere 2. Seasonal pressure variations. Journal of Geophysical Research, 98, 3149 â 3181.
dc.identifier.citedreferenceRapp, D. ( 2008 ). Human missions to Mars: Enabling technologies for exploring the Red Planet. New York: Springer.
dc.identifier.citedreferenceRennó, N. O., Bos, B. J., Catling, D., Clark, B. C., Drube, L., Fisher, D., et al. ( 2009 ). Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. Journal of Geophysical Research, 114, E00E03. https://doi.org/10.1029/2009JE003362
dc.identifier.citedreferenceRiveraâ Valentín, E. G., Blackburn, D. G., & Ulrich, R. ( 2011 ). Revisiting the thermal inertia of Iapetus: Clues to the thickness of the dark material. Icarus, 216, 347 â 358.
dc.identifier.citedreferenceRiveraâ Valentín, E. G., & Chevrier, V. F. ( 2015 ). Revisiting the Phoenix TECP data: Implications for regolith control of nearâ surface humidity on Mars. Icarus, 253, 156 â 158.
dc.identifier.citedreferenceRodriguez Colon, B., & Riveraâ Valentín, E. G. ( 2016 ). Investigating the biological potential of Gale crater’s subsurface. LPSC XLVII, 2026.
dc.identifier.citedreferenceRummel, J. D., Beaty, D. W., Jones, M. A., Bakermans, C., Barlow, N. G., Boston, P. J., et al. ( 2014 ). A new analysis of Mars special regions: Findings of the second MEPAG Special regions science analysis group (SRâ SAG2). Astrobiology, 14 ( 11 ), 887 â 968.
dc.identifier.citedreferenceSavijärvi, H., Harri, A.â M., & Kemppinen, O. ( 2016 ). The diurnal water cycle at Curiosity: Role of exchange with the regolith. Icarus, 265, 63 â 69.
dc.identifier.citedreferenceSchmidt, F., Douté, S., Schmitt, B., Vincendon, M., Bibring, J.â P., Langevin, Y., & The Omega Team ( 2009 ). Albedo control of seasonal South Polar cap recession on Mars. Icarus, 200 ( 2 ), 374 â 394.
dc.identifier.citedreferenceSchorghofer, N., & Aharonson, O. ( 2005 ). Stability and exchange of subsurface ice on Mars. Journal of Geophysical Research, 110, E54413. https://doi.org/10.1029/2004JE002350
dc.identifier.citedreferenceSebastián, E., Armiens, C., Gómezâ Elvira, J., Zorzano, M. P., Martinezâ Frias, J., Esteban, B., & Ramos, M. ( 2010 ). The rover environmental monitoring station ground temperature sensor: A pyrometer for measuring ground temperature on Mars. Sensors, 10, 9211 â 9231.
dc.identifier.citedreferenceSizemore, H. G., & Mellon, M. T. ( 2008 ). Laboratory characterization of the structural properties controlling dynamical gas transport in Marsâ analog soils. Icarus, 197, 606 â 620.
dc.identifier.citedreferenceSteele, L. J., Balme, M. R., Lewis, S. R., & Spiga, A. ( 2017 ). The water cycle and regolithâ atmosphere interaction at Gale crater, Mars. Icarus, 289, 56 â 79.
dc.identifier.citedreferenceStillman, D. E., & Grimm, R. E. ( 2011 ). Dielectric signatures of adsorbed and salty liquid water at the Phoenix landing site, Mars. Journal of Geophysical Research, 116, E09005. https://doi.org/10.1029/2011JE003838
dc.identifier.citedreferenceSullivan, R. E., Thomas, P., Veverka, J., Malin, M., & Edgett, K. S. ( 2001 ). Mass movement slope streaks imaged by the Mars Orbiter Camera. Journal of Geophysical Research, 106, 23,607 â 23,633.
dc.identifier.citedreferenceUlrich, R. ( 2009 ). Modeling diffusion advection in the mass transfer of water vapor through Martian regolith. Icarus, 201, 127 â 134.
dc.identifier.citedreferenceVasavada, A. R., Piqueux, S., Lewis, K. W., Lemmon, M. T., & Smith, M. D. ( 2017 ). Thermophysical properties along Curiosity’s traverse in Gale crater, Mars, derived from REMS ground temperature sensor. Icarus, 284, 372 â 386.
dc.identifier.citedreferenceYork, D., Evensen, N. M., López Martínez, M., & De Basabe Delgado, J. ( 2004 ). Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics, 72, 367 â 375.
dc.identifier.citedreferenceZent, A. P., Haberle, R. M., Houben, H. C., & Jakosky, B. M. ( 1993 ). A coupled subsurfaceâ boundary layer model of water on Mars. Journal of Geophysical Research, 98, 3319 â 3337.
dc.identifier.citedreferenceZent, A. P., Hecht, M. H., Cobos, D. R., Wood, S. E., Hudson, T. L., Milkovich, S. M., et al. ( 2010 ). Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. Journal of Geophysical Research, 115, E00E14. https://doi.org/10.1029/2009JE003420
dc.identifier.citedreferenceZorzano, M. P., Mateoâ Martí, E., Prietoâ Ballesteros, O., Osuna, S., & Renno, N. ( 2009 ). Stability of liquid saline water on present day Mars. Geophysical Research Letters, 36, L20201. https://doi.org/10.1029/2009GL040315
dc.identifier.citedreferenceAharonson, O., & Schorghofer, N. ( 2006 ). Subsurface ice on Mars with rough topography. Journal of Geophysical Research, 111, E11007. https://doi.org/10.1029/2005JE002636
dc.identifier.citedreferenceApplebaum, J., & Flood, D. J. ( 1989 ). Solar radiation on Mars (pp. 1â 34). Cleveland, OH: NASA Technical Memorandum.
dc.identifier.citedreferenceBhardwaj, A., Sam, L., Martinâ Torres, F. J., Zorzano, M.â P., & Fonseca, R. M. ( 2017 ). Martian slope streaks as plausible indicators of transient water activity. Science Reports, 7, 7074.
dc.identifier.citedreferenceBlackburn, D. G., Bryson, K., Chevrier, V. F., & Roe, L. A. ( 2009 ). Sublimation kinetics of CO2 ice on Mars. Planetary and Space Science, 58, 780 â 791.
dc.identifier.citedreferenceBrass, G. W. ( 1980 ). Stability of brines on Mars. Icarus, 42 ( 1 ), 20 â 28.
dc.identifier.citedreferenceBryson, K. L., Chevrier, V. F., Sears, D. W. G., & Ulrich, R. ( 2008 ). Stability of ice on Mars and the water vapor diurnal cycle: Experimental study of the sublimation of ice through a fineâ grained basaltic regolith. Icarus, 196, 446 â 458.
dc.identifier.citedreferenceChevrier, V., Sears, D., Chittenden, J., Roe, L., Ulrich, R., Bryson, K., et al. ( 2007 ). Sublimation rate of ice under simulated Mars conditions and the effect of layers of mock regolith JSC Marsâ 1. Geophysical Research Letters, 34, L02203. https://doi.org/10.1029/2006GL028401
dc.identifier.citedreferenceChevrier, V. F., & Altheide, T. S. ( 2008 ). Low temperature aqueous ferric sulfate solutions on the surface of Mars. Geophysical Research Letters, 35, L22101. https://doi.org/10.1029/2008GL035489
dc.identifier.citedreferenceChevrier, V. F., & Riveraâ Valentin, E. G. ( 2012 ). Formation of recurring slope lineae by liquid brines on presentâ day Mars. Geophysical Research Letters, 39, L21202. https://doi.org/10.1029/2012GL054119
dc.identifier.citedreferenceChevrier, V. F., Hanley, J., & Altheide, T. S. ( 2009 ). Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars. Geophysical Research Letters, 36, L10202. https://doi.org/10.1029/2009GL037497
dc.identifier.citedreferenceChristensen, P. R., Bandfield, J. L., Hamilton, V. E., Ruff, S. W., Kieffer, H. H., Titus, T. N., et al. ( 2001 ). Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. Journal of Geophysical Research, 106, 23,823 â 23,871.
dc.identifier.citedreferenceClark, B. C. ( 1978 ). Implications of abundant hygroscopic minerals in the Martian regolith. Icarus, 34 ( 3 ), 645 â 665.
dc.identifier.citedreferenceClifford, S. M., & Hillel, D. ( 1986 ). Knudsen diffusionâ The effect of small pore size and low gas pressure on gaseous transport in soil. Soil Science, 141, 289 â 297.
dc.identifier.citedreferenceCull, S. C., Arvidson, R. E., Catalano, J. G., Ming, D. W., Morris, R. V., Mellon, M. T., & Lemmon, M. ( 2010 ). Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars. Geophysical Research Letters, 37, L22203. https://doi.org/10.1029/2010GL045269
dc.identifier.citedreferenceDundas, C. M., McEwen, A. S., Chojnacki, M., Milazzo, M. P., Byrne, S., McElwaine, J. N., & Urso, A. ( 2017 ). Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water. Nature Geoscience, 10, 903 â 907.
dc.identifier.citedreferenceKreslavsky, M. A., & Head, J. W. ( 2009 ). Slope streaks on Mars: A new wet mechanism. Icarus, 201 ( 2 ), 517 â 527.
dc.identifier.citedreferenceElsenousy, A., Hanley, J., & Chevrier, V. F. ( 2015 ). Effect of evaporation and freezing on the salt paragenesis and habitability of brines at the Phoenix landing site. Earth and Planetary Science Letters, 421, 39 â 46.
dc.identifier.citedreferenceFeistel, R., & Wagner, W. ( 2007 ). Sublimation pressure and sublimation enthalpy of H2O ice Ih between 0 and 273.16K. Geochimica et Cosmochimica Acta, 71 ( 1 ), 36 â 45.
dc.identifier.citedreferenceFischer, E., Martinez, G. M., Elliott, H. M., & Renno, N. O. ( 2014 ). Experimental evidence for the formation of liquid saline water on Mars. Geophysical Research Letters, 41, 4456 â 4462. https://doi.org/10.1002/2014GL060302
dc.identifier.citedreferenceFischer, E., Martinez, G. M., & Renno, N. O. ( 2016 ). Formation and Persistence of Brine on Mars: Experimental simulations throughout the diurnal cycle at the Phoenix landing site. Astrobiology, 16 ( 12 ), 937 â 948.
dc.identifier.citedreferenceGlavin, D. P., Freissinet, C., & Miller, K. E. ( 2013 ). Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. Journal of Geophysical Research: Planets, 118, 1955 â 1973. https://doi.org/10.1002/jgre.20144
dc.identifier.citedreferenceGomezâ Elvira, J., Armiens, C., Castañer, L., Domínguez, M., Genzer, M., Gómez, F., et al. ( 2012 ). REMS: The environmental sensor suite for the Mars science laboratory rover. Space Science Reviews, 170 ( 1â 4 ), 583 â 640.
dc.identifier.citedreferenceGough, R. V., Chevrier, V. F., & Tolbert, M. A. ( 2014 ). Formation of aqueous solutions on Mars via deliquescence of chlorideâ perchlorate binary mixtures. Earth and Planetary Science Letters, 393, 73 â 82.
dc.identifier.citedreferenceGough, R. V., Chevrier, V. F., & Tolbert, M. A. ( 2016 ). Formation of liquid water at low temperatures via the deliquescence of calcium chloride: Implications for Antarctica and Mars. Planetary and Space Science, 131, 79 â 87.
dc.identifier.citedreferenceGough, R. V., Chevrier, V. F., Baustian, K. J., Wise, M. E., & Tolbert, M. A. ( 2011 ). Laboratory studies of perchlorate phase transitions: Support for metastable aqueous perchlorate solutions on Mars. Earth and Planetary Science Letters, 312 ( 3â 4 ), 371 â 377.
dc.identifier.citedreferenceGrotzinger, J. P., Crisp, J., Vasavada, A. R., Anderson, R. C., Baker, C. J., Barry, R., et al. ( 2012 ). Mars science laboratory mission and science investigation. Space Science Reviews, 170, 5 â 56.
dc.identifier.citedreferenceHaberle, R. M., McKay, C. P., Schaeffer, J., Cabrol, N. A., Grin, E. A., Zent, A. P., & Quinn, R. ( 2001 ). On the possibility of liquid water on presentâ day Mars. Journal of Geophysical Research, 106 ( E10 ), 23,317 â 23,326.
dc.identifier.citedreferenceHamilton, V. E., Vasavada, A. R., Sebastián, E., de la Torre Juárez, M., Ramos, M., Armiens, C., et al. ( 2014 ). Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater. Journal of Geophysical Research: Planets, 119, 745 â 770. https://doi.org/10.1002/2013JE004520
dc.identifier.citedreferenceHanley, J., Chevrier, V. F., Berget, D. J., & Adams, R. D. ( 2012 ). Chlorate salts and solutions on Mars. Geophysical Research Letters, 39, L08201. https://doi.org/10.1029/2012GL051239
dc.identifier.citedreferenceHarri, A. M., Genzer, M., & Kemppinen, O. ( 2014 ). Mars Science Laboratory relative humidity observations: Initial results. Journal of Geophysical Research: Planets, 119, 2132 â 2147. https://doi.org/10.1002/2013JE004514
dc.identifier.citedreferenceHecht, M. H., Kounaves, S. P., Quinn, R. C., West, S. J., Young, S. M. M., Ming, D. W., et al. ( 2009 ). Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science, 325, 64 â 67.
dc.identifier.citedreferenceHudson, O., Aharonson, T. L., Schorghofer, N., Farmer, C., Hecht, M., & Bridges, N. ( 2007 ). Water vapor diffusion in Mars subsurface environments. Journal of Geophysical Research, 112, E05016. https://doi.org/10.1029/2006JE002815
dc.identifier.citedreferenceHudson, T. L., & Aharonson, O. ( 2008 ). Diffusion barriers at Mars surface conditions: Salt crusts, particle size mixtures, and dust. Journal of Geophysical Research, 113, E09008. https://doi.org/10.1029/2007JE003026
dc.identifier.citedreferenceIngersoll, A. P. ( 1970 ). Mars: Occurrence of liquid water. Science, 168 ( 3934 ), 972 â 973.
dc.identifier.citedreferenceJensen, E. J., Diskin, G., Lawson, R. P., Lance, S., Paul Bui, T., Hilavka, D., et al. ( 2013 ). Ice nucleation and dehydration in the Tropical Tropopause Layer. Proceedings of the National Academy of Sciences, 110, 2041 â 2046.
dc.identifier.citedreferenceJia, X., Gu, W., Li, Y. J., Cheng, P., Tang, Y., Guo, L., et al. ( 2018 ). Phase transitions and hygroscopic growth of Mg(ClO 4 ) 2, NaClO 4, and NaClO 4 ·H 2 O: Implications for the stability of aqueous water in hyperarid environments on Mars and on Earth. ACS Earth and Space Chemistry, 2, 159 â 167.
dc.identifier.citedreferenceJohnsson, A., Reiss, D., Hauber, E., Hiesinger, H., & Zanetti, M. ( 2014 ). Evidence for very recent meltâ water and debris flow activity in gullies in a young midâ latitude crater on Mars. Icarus, 235, 37 â 54.
dc.identifier.citedreferenceKereszturi, A., & Riveraâ Valentín, E. G. ( 2012 ). Locations of thin liquid water layers on presentâ day Mars. Icarus, 221 ( 1 ), 289 â 295.
dc.identifier.citedreferenceKereszturi, A., Möhlmann, D., Berczi, S., Ganti, T., Horvath, A., Kuti, A., et al. ( 2010 ). Indications of brine related local seepage phenomena on the northern hemisphere of Mars. Icarus, 207, 149 â 164.
dc.identifier.citedreferenceKossacki, K. J., & Markiewicz, W. J. ( 2014 ). Seasonal flows on dark Martian slopes, thermal condition for liquescence of salts. Icarus, 233, 126 â 130.
dc.identifier.citedreferenceLeshin, L. A., Mahaffy, P. R., Webster, C. R., Cabane, M., Coll, P., Conrad, P. G., et al. ( 2013 ). Volatile, isotope, and organic analysis of Martian fines with the Mars curiosity rover. Science, 341 ( 6153 ), 123,8937 â 123,8937.
dc.identifier.citedreferenceMalin, M., & Edgett, K. ( 2003 ). Evidence for persistent flow and aqueous sedimentation on early Mars. Science, 302, 1931 â 1934.
dc.identifier.citedreferenceMaltagliati, L., Montmessin, F., Fedorova, A., Korablev, O., Forget, F., & Bertaux, J. L. ( 2011 ). Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science, 333 ( 6051 ), 1868 â 1871.
dc.identifier.citedreferenceMarion, G. M., Catling, D. C., Zahnle, K. J., & Claire, M. W. ( 2010 ). Modeling aqueous perchlorate chemistries with applications to Mars. Icarus, 207 ( 2 ), 675 â 685.
dc.identifier.citedreferenceMartinâ Torres, F. J., Zorzano, M.â P., Valentinâ Serrano, P., Harri, A.â M., Genzer, M., Kemppinen, O., et al. ( 2015 ). Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 8 ( 5 ), 357 â 361.
dc.identifier.citedreferenceMartínez, G. M., & Renno, N. O. ( 2013 ). Water and brines on Mars: Current evidence and implications for MSL. Space Science Reviews, 175 ( 1â 4 ), 29 â 51.
dc.identifier.citedreferenceMartínez, G. M., Fischer, E., Renno, N. O., Sebastián, E., Kemppinen, O., Bridges, N., et al. ( 2016 ). Likely frost events at Gale crater: Analysis from MSL/REMS measurements. Icarus, 280, 93 â 102.
dc.identifier.citedreferenceMartínez, G. M., Newman, C. N., De Vicenteâ Retortillo, A., Fischer, E., Renno, N. O., Richardson, M. I., et al. ( 2017 ). The modern nearâ surface Martian climate: A review of inâ situ meteorological data from viking to curiosity. Space Science Reviews, 105 ( 17 ), 6222 â 44.
dc.identifier.citedreferenceMartínez, G. M., Renno, N., Fischer, E., Borlina, C. S., Hallet, B., Torre Juárez, M., et al. ( 2014 ). Surface energy budget and thermal inertia at Gale Crater: Calculations from groundâ based measurements. Journal of Geophysical Research: Planets, 119, 1822 â 1838. https://doi.org/10.1002/2014JE004618
dc.identifier.citedreferenceMassé, M., Conway, S. J., Gargani, J., Patel, M. R., Pasquon, K., McEwen, A., et al. ( 2016 ). Transport processes induced by metastable boiling water under Martian surface conditions. Nature Geoscience, 9, 425 â 428.
dc.identifier.citedreferenceMcEwen, A., Dundas, C. M., Mattson, S. S., Toigo, A. D., Ojha, L., Wray, J. J., et al. ( 2013 ). Recurring slope lineae in equatorial regions of Mars. Nature Geoscience, 7, 53 â 58.
dc.identifier.citedreferenceMcEwen, A., Ojha, L., Dundas, C. M., Mattson, S. S., Byrne, S., Wray, J. J., et al. ( 2011 ). Seasonal flows on warm Martian slopes. Science, 333, 740 â 743.
dc.identifier.citedreferenceMellon, M. T., Jakosky, B. M., Kieffer, H. H., & Christensen, P. R. ( 2000 ). Highâ resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus, 148, 437 â 455.
dc.identifier.citedreferenceMing, D. W., Archer, P. D., Glavin, D. P., Eigenbrode, J. L., Franz, H. B., Sutter, B., et al. ( 2014 ). Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars. Science, 343 ( 6169 ), 1245267.
dc.identifier.citedreferenceMitrofanov, I. G., Litvak, M. L., Varenikov, A. B., Barmakov, Y. N., Behar, A., Bobrovnitsky, Y. I., et al. ( 2012 ). Dynamic Albedo of Neutrons (DAN) Experiment Onboard NASA. Mars Science Laboratory. Space Science Reviews, 170, 559 â 582.
dc.identifier.citedreferenceMurphy, D. M., & Koop, T. ( 2005 ). Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quarterly Journal of the Royal Meteorological Society, 131 ( 608 ), 1539 â 1565.
dc.identifier.citedreferenceNavarroâ Gonzalez, R., Vargas, E., de la Rosa, J., Raga, A. C., & McKay, C. P. ( 2010 ). Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. Journal of Geophysical Research, 115, E12010. https://doi.org/10.1029/2010JE003599
dc.identifier.citedreferenceNikolakakos, G., & Whiteway, J. A. ( 2017 ). Laboratory study of adsorption and deliquescence on the surface of Mars. Icarus, 308, 221 â 229. https://doi.org/10.1016/j.icarus.2017.05.006
dc.identifier.citedreferenceNuding, D. L., Gough, R. V., Venkateswaran, K. J., Spry, J. A., & Tolbert, M. A. ( 2017 ). Laboratory investigations on the survival of Bacillus subtilis spores in deliquescent salt Mars analog environments. Astrobiology, 17, 997 â 1008.
dc.identifier.citedreferenceNuding, D. L., Riveraâ Valentín, E. G., Davis, R. D., Gough, R. V., Chevrier, V. F., & Tolbert, M. A. ( 2014 ). Deliquescence and efflorescence of calcium perchlorate: An investigation of stable aqueous solutions relevant to Mars. Icarus, 243, 420 â 428.
dc.identifier.citedreferenceOjha, L., Wilhelm, M. B., Murchie, S. L., Mcewen, A. S., Wray, J. J., Hanley, J., et al. ( 2015 ). Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geoscience, 8, 829 â 832.
dc.identifier.citedreferencePal, B., & Kereszturi, A. ( 2017 ). Possibility of microscopic liquid water formation at landing sites on Mars and their observational potential. Icarus, 282, 84 â 92.
dc.identifier.citedreferencePestova, O. N., Myund, L. A., Khripun, M. K., & Prigaro, A. V. ( 2005 ). Polythermal study of the systems M(ClO 4 ) 2 â H 2 O. Russian Journal of Applied Chemistry, 78 ( 3 ), 409 â 413.
dc.identifier.citedreferencePutzig, N. E., Mellon, M. T., Kretke, K. A., & Arvidson, R. E. ( 2005 ). Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus, 173 ( 2 ), 325 â 341.
dc.identifier.citedreferenceRaack, J., Conway, S. J., Herny, C., Balme, M. R., Carpy, S., & Patel, M. R. ( 2017 ). Water induced sediment levitation enhances downslope transport on Mars. Nature Communications, 8, 1151.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.