Show simple item record

A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs

dc.contributor.authorPrade, Elke
dc.contributor.authorMahajan, Mukesh
dc.contributor.authorIm, Sang‐choul
dc.contributor.authorZhang, Meng
dc.contributor.authorGentry, Katherine A.
dc.contributor.authorAnantharamaiah, G. M.
dc.contributor.authorWaskell, Lucy
dc.contributor.authorRamamoorthy, Ayyalusamy
dc.date.accessioned2018-07-13T15:46:22Z
dc.date.available2019-09-04T20:15:38Zen
dc.date.issued2018-07-09
dc.identifier.citationPrade, Elke; Mahajan, Mukesh; Im, Sang‐choul ; Zhang, Meng; Gentry, Katherine A.; Anantharamaiah, G. M.; Waskell, Lucy; Ramamoorthy, Ayyalusamy (2018). "A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs." Angewandte Chemie International Edition 57(28): 8458-8462.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/144586
dc.description.abstractStructural interactions that enable electron transfer to cytochromeâ P450 (CYP450) from its redox partner CYP450â reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membraneâ bound functional complex to reveal interactions between the fullâ length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochromeâ b5 (cytâ b5), Argâ 125 on the Câ helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study proteinâ protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.Solving a structure of the cytochrome P450 (CYP450) complex with its redox partner is a vital prerequisite to understand the selective route of electron transfer. Structural interactions of CYP450â redox partner complex anchored in lipid membrane are a minimal requirement for functionality (electron transfer). This study unravels the drug/xenobiotic metabolism by diverse microsomal CYPs in their native membrane environment.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercytochrome P450
dc.subject.othernanodiscs
dc.subject.othermembrane proteins
dc.subject.othercytochrome P450 reductase
dc.titleA Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144586/1/anie201802210.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144586/2/anie201802210_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144586/3/anie201802210-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/anie.201802210
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceJ. R. Brender, S. Salamekh, A. Ramamoorthy, Acc. Chem. Res. 2012, 45, 454 â 462.
dc.identifier.citedreferenceY. Ding, L. M. Fujimoto, Y. Yao, G. V. Plano, F. M. Marassi, Biochim. Biophys. Acta. 2015, 1848, 712 â 720.
dc.identifier.citedreferenceM. Zhang, R. Huang, R. Ackermann, S. C. Im, L. Waskell, A. Schwendeman, A. Ramamoorthy, Angew. Chem. Int. Ed. 2016, 55, 4497 â 4499; Angew. Chem. 2016, 128, 4573 â 4575.
dc.identifier.citedreferenceK. Mörs, C. Roos, F. Scholz, J. Wachtveitl, V. Dotsch, F. Bernhard, C. Glaubitz, Biochim. Biophys. Acta Biomembr. 2013, 1828, 1222 â 1229.
dc.identifier.citedreferenceT. Ravula, C. Barnaba, M. Mahajan, G. M. Anantharamaiah, S. C. Im, L. Waskell, A. Ramamoorthy, Chem. Commun. 2017, 53, 12798 â 12801.
dc.identifier.citedreferenceR. Huang, M. Zhang, F. Rwere, L. Waskell, A. Ramamoorthy, J. Biol. Chem. 2015, 290, 4843 â 4855.
dc.identifier.citedreferenceC. Aisenbrey, U. S. Sudheendra, H. Ridley, P. Bertani, A. Marquette, S. Nedelkina, J. H. Lakey, B. Bechinger, Eur. Biophys. J. 2007, 37, 71 â 80.
dc.identifier.citedreferenceU. H. Dürr, K. Yamamoto, S. C. Im, L. Waskell, A. Ramamoorthy, J. Am. Chem. Soc. 2007, 129, 6670 â 6671.
dc.identifier.citedreferenceY. Shen, R. Vernon, D. Baker, A. Bax, J. Biomol. NMR 2009, 43, 63 â 78.
dc.identifier.citedreferenceF. Rwere, C. Xia, S. Im, M. M. Haque, D. J. Stuehr, L. Waskell, J. J. Kim, J. Biol. Chem. 2016, 291, 14639 â 14661.
dc.identifier.citedreferenceD. Franke, M. V. Petoukhov, P. V. Konarev, A. Panjkovich, A. Tuukkanen, H. D. T. Mertens, A. G. Kikhney, N. R. Hajizadeh, J. M. Franklin, C. M. Jeffries, D. I. Svergun, J. Appl. Crystallogr. 2017, 50, 1212 â 1225.
dc.identifier.citedreferenceM. Michalek, E. S. Salnikov, S. Werten, B. Bechinger, Biochemistry 2013, 52, 847 â 858.
dc.identifier.citedreferenceG. C. P. vanâ Zundert, J. Rodrigues, M. Trellet, C. Schmitz, P. L. Kastritis, E. Karaca, A. S. J. Melquiond, M. vanâ Dijk, S. J. deâ Vries, A. Bonvin, J. Mol. Biol. 2016, 428, 720 â 725.
dc.identifier.citedreferenceA. Bridges, L. Gruenke, Y. T. Chang, I. A. Vakser, G. Loew, L. Waskell, J. Biol. Chem. 1998, 273, 17036 â 17049.
dc.identifier.citedreferenceC. Page, Curr. Opin. Chem. Biol. 2003, 7, 551 â 556.
dc.identifier.citedreferenceM. Sugishima, H. Sato, Y. Higashimoto, J. Harada, K. Wada, K. Fukuyama, M. Noguchi, Proc. Natl. Acad. Sci. USA 2014, 111, 2524 â 2529.
dc.identifier.citedreferenceI. F. Sevrioukova, H. Li, H. Zhang, J. A. Peterson, T. L. Poulos, Proc. Natl. Acad. Sci. USA 1999, 96, 1863 â 1868.
dc.identifier.citedreferenceI.â V. Kurnikov, HARLEM molecular modeling package, 2000.
dc.identifier.citedreferenceD. F. Estrada, J. S. Laurence, E. E. Scott, J. Biol. Chem. 2016, 291, 3990 â 4003.
dc.identifier.citedreferenceF. Glaser, T. Pupko, I. Paz, R. E. Bell, D. Bechor-Shental, E. Martz, N. Ben-Tal, Bioinformatics 2003, 19, 163 â 164.
dc.identifier.citedreferenceM. Landau, I. Mayrose, Y. Rosenberg, F. Glaser, E. Martz, T. Pupko, N. Ben-Tal, Nucleic Acids Res. 2005, 33, W 299 â W 302.
dc.identifier.citedreferenceK. Nakamura, T. Horiuchi, T. Yasukochi, K. Sekimizu, T. Hara, Y. Sagara, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1994, 1207, 40 â 48.
dc.identifier.citedreferenceK. P. Schlingmann, M. Kaufmann, S. Weber, A. Irwin, C. Goos, U. John, J. Misselwitz, G. Klaus, E. Kuwertz-Broking, H. Fehrenbach, A. M. Wingen, T. Guran, J. G. Hoenderop, R. J. Bindels, D. E. Prosser, G. Jones, M. Konrad, N. Engl. J. Med. 2011, 365, 410 â 421.
dc.identifier.citedreferenceS. Ahuja, N. Jahr, S. C. Im, S. Vivekanandan, N. Popovych, S. V. Leâ Clair, R. Huang, R. Soong, J. Xu, K. Yamamoto, R. P. Nanga, A. Bridges, L. Waskell, A. Ramamoorthy, J. Biol. Chem. 2013, 288, 22080 â 22095.
dc.identifier.citedreferenceC. Barnaba, K. Gentry, N. Sumangala, A. Ramamoorthy, F1000Res 2017, 6, 662.
dc.identifier.citedreferenceC. Barnaba, B. R. Sahoo, T. Ravula, I. G. Medina-Meza, S. C. Im, G. M. Anantharamaiah, L. Waskell, A. Ramamoorthy, Angew. Chem. Int. Ed. 2018, 57, 3391 â 3395; Angew. Chem. 2018, 130, 3449 â 3453.
dc.identifier.citedreferenceA. L. Shen, K. A. O’Leary, C. B. Kasper, J. Biol. Chem. 2002, 277, 6536 â 6541.
dc.identifier.citedreferenceD. W. Nebert, D. W. Russell, Lancet 2002, 360, 1155 â 1162.
dc.identifier.citedreferenceL. Orlando, P. Schiavone, P. Fedele, N. Calvani, A. Nacci, P. Rizzo, A. Marino, M. D’Amico, F. Sponziello, E. Mazzoni, M. Cinefra, N. Fazio, E. Maiello, N. Silvestris, G. Colucci, S. Cinieri, Cancer Treat. Rev. 2010, 36, S 67 â S 71.
dc.identifier.citedreferenceA. O’Donnell, I. Judson, M. Dowsett, F. Raynaud, D. Dearnaley, M. Mason, S. Harland, A. Robbins, G. Halbert, B. Nutley, M. Jarman, Br. J. Cancer 2004, 90, 2317 â 2325.
dc.identifier.citedreferenceN. M. Pearl, J. Wilcoxen, S. Im, R. Kunz, J. Darty, R. D. Britt, S. W. Ragsdale, L. Waskell, Biochemistry 2016, 55, 6558 â 6567.
dc.identifier.citedreferenceB. C. Monk, T. M. Tomasiak, M. V. Keniya, F. U. Huschmann, J. D. Tyndall, J. D. O’Connellâ 3rd, R. D. Cannon, J. G. McDonald, A. Rodriguez, J. S. Finer-Moore, R. M. Stroud, Proc. Natl. Acad. Sci. USA 2014, 111, 3865 â 3870.
dc.identifier.citedreferenceD. Ghosh, J. Griswold, M. Erman, W. Pangborn, Nature 2009, 457, 219 â 223.
dc.identifier.citedreferenceD. Hamdane, C. Xia, S. C. Im, H. Zhang, J. J. Kim, L. Waskell, J. Biol. Chem. 2009, 284, 11374 â 11384.
dc.identifier.citedreferenceJ. Ellis, A. Gutierrez, I. L. Barsukov, W. C. Huang, J. G. Grossmann, G. C. Roberts, J. Biol. Chem. 2009, 284, 36628 â 36637.
dc.identifier.citedreferenceT. L. Poulos, B. C. Finzel, A. J. Howard, J. Mol. Biol. 1987, 195, 687 â 700.
dc.identifier.citedreferenceE. E. Scott, Y. A. He, M. R. Wester, M. A. White, C. C. Chin, J. R. Halpert, E. F. Johnson, C. D. Stout, Proc. Natl. Acad. Sci. USA 2003, 100, 13196 â 13201.
dc.identifier.citedreferenceJ. K. Yano, M. H. Hsu, K. J. Griffin, C. D. Stout, E. F. Johnson, Nat. Struct. Mol. Biol. 2005, 12, 822 â 823.
dc.identifier.citedreferenceN. Mast, M. A. White, I. Bjorkhem, E. F. Johnson, C. D. Stout, I. A. Pikuleva, Proc. Natl. Acad. Sci. USA 2008, 105, 9546 â 9551.
dc.identifier.citedreferenceA. Zhang, T. Zhang, E. A. Hall, S. Hutchinson, M. J. Cryle, L. L. Wong, W. Zhou, S. G. Bell, Mol. Biosyst. 2015, 11, 869 â 881.
dc.identifier.citedreferenceE. M. Petrunak, N. M. DeVore, P. R. Porubsky, E. E. Scott, J. Biol. Chem. 2014, 289, 32952 â 32964.
dc.identifier.citedreferenceE. E. Scott, M. A. White, Y. A. He, E. F. Johnson, C. D. Stout, J. R. Halpert, J. Biol. Chem. 2004, 279, 27294 â 27301.
dc.identifier.citedreferenceA. V. Pandey, C. E. Fluck, Pharmacol. Ther. 2013, 138, 229 â 254.
dc.identifier.citedreferenceQ. Zhao, S. Modi, G. Smith, M. Paine, P. D. McDonagh, C. R. Wolf, D. Tew, L. Y. Lian, G. C. Roberts, H. P. Driessen, Protein Sci. 1999, 8, 298 â 306.
dc.identifier.citedreferenceS. D. Black, J. S. French, C. H. Williams,â Jr., M. J. Coon, Biochem. Biophys. Res. Commun. 1979, 91, 1528 â 1535.
dc.identifier.citedreferenceJ. L. Baylon, I. L. Lenov, S. G. Sligar, E. Tajkhorshid, J. Am. Chem. Soc. 2013, 135, 8542 â 8551.
dc.identifier.citedreferenceF. Hagn, M. Etzkorn, T. Raschle, G. Wagner, J. Am. Chem. Soc. 2013, 135, 1919 â 1925.
dc.identifier.citedreferenceM. Etzkorn, T. Raschle, F. Hagn, V. Gelev, A. J. Rice, T. Walz, G. Wagner, Structure 2013, 21, 394 â 401.
dc.identifier.citedreferenceR. Puthenveetil, O. Vinogradova, Proteins Struct. Funct. Bioinf. 2013, 81, 1222 â 1231.
dc.identifier.citedreferenceS. Bibow, M. G. Carneiro, T. M. Sabo, C. Schwiegk, S. Becker, R. Riek, D. Lee, Protein Sci. 2014, 23, 851 â 856.
dc.identifier.citedreferenceD. A. Fox, P. Larsson, R. H. Lo, B. M. Kroncke, P. M. Kasson, L. Columbus, J. Am. Chem. Soc. 2014, 136, 9938 â 9946.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.