Show simple item record

Metabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria

dc.contributor.authorLatimer, Scott
dc.contributor.authorLi, Yubing
dc.contributor.authorNguyen, Thuong T.H.
dc.contributor.authorSoubeyrand, Eric
dc.contributor.authorFatihi, Abdelhak
dc.contributor.authorElowsky, Christian G.
dc.contributor.authorBlock, Anna
dc.contributor.authorPichersky, Eran
dc.contributor.authorBasset, Gilles J.
dc.date.accessioned2018-07-13T15:46:38Z
dc.date.available2019-09-04T20:15:38Zen
dc.date.issued2018-07
dc.identifier.citationLatimer, Scott; Li, Yubing; Nguyen, Thuong T.H.; Soubeyrand, Eric; Fatihi, Abdelhak; Elowsky, Christian G.; Block, Anna; Pichersky, Eran; Basset, Gilles J. (2018). "Metabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria." The Plant Journal 95(2): 358-370.
dc.identifier.issn0960-7412
dc.identifier.issn1365-313X
dc.identifier.urihttps://hdl.handle.net/2027.42/144600
dc.publisherWiley Periodicals, Inc.
dc.subject.othercomparative genomics
dc.subject.otherArabidopsis thaliana
dc.subject.otherbranched‐chain amino acid
dc.subject.othermitochondrion
dc.subject.othersenescence
dc.subject.otherubiquinone
dc.subject.othercatabolism
dc.titleMetabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144600/1/tpj13955_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144600/2/tpj13955.pdf
dc.identifier.doi10.1111/tpj.13955
dc.identifier.sourceThe Plant Journal
dc.identifier.citedreferenceMiyashita, Y. and Good, A.G. ( 2008 ) NAD(H)‐dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark‐induced carbon starvation. J. Exp. Bot. 59, 667 – 680.
dc.identifier.citedreferenceIshizaki, K., Schauer, N., Larson, T.R., Graham, I.A., Fernie, A.R. and Leaver, C.J. ( 2006 ) The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. Plant J. 47, 751 – 760.
dc.identifier.citedreferenceKarimi, M., Inze, D. and Depicker, A. ( 2002 ) GATEWAY vectors for Agrobacterium‐mediated plant transformation. Trends Plant Sci. 7, 193 – 195.
dc.identifier.citedreferenceKleinboelting, N., Huep, G., Kloetgen, A., Viehoever, P. and Weisshaar, B. ( 2012 ) GABI‐Kat SimpleSearch: new features of the Arabidopsis thaliana T‐DNA mutant database. Nucleic Acids Res. 40, D1211 – D1215.
dc.identifier.citedreferenceLange, P.R., Eastmond, P.J., Madagan, K. and Graham, I.A. ( 2004 ) An Arabidopsis mutant disrupted in valine catabolism is also compromised in peroxisomal fatty acid beta‐oxidation. FEBS Lett. 571, 147 – 153.
dc.identifier.citedreferenceLoupatty, F.J., Ruiter, J.P.N., IJIst, L., Duran, M. and Wanders, R.J.A. ( 2004 ) Direct nonisotopic assay of 3‐methylglutaconyl‐CoA hydratase in cultured human skin fibroblasts to specifically identify patients with 3‐methylglutaconic aciduria type I. Clin. Chem. 50, 1447 – 1450.
dc.identifier.citedreferenceLu, Y., Savage, L.J., Larson, M.D., Wilkerson, C.G. and Last, R.L. ( 2011 ) Chloroplast 2010: a database for large‐scale phenotypic screening of Arabidopsis mutants. Plant Physiol. 155, 1589 – 1600.
dc.identifier.citedreferenceMack, M., Liesert, M., Zschocke, J., Peters, V., Linder, D. and Buckel, W. ( 2006a ) 3‐Methylglutaconyl‐CoA hydratase from Acinetobacter sp. Arch. Microbiol. 185, 297 – 306.
dc.identifier.citedreferenceMack, M., Schniegler‐Mattox, U., Peters, V., Hoffmann, G.F., Liesert, M., Buckel, W. and Zschocke, J. ( 2006b ) Biochemical characterization of human 3‐methylglutaconyl‐CoA hydratase and its role in leucine metabolism. FEBS J. 273, 2012 – 2022.
dc.identifier.citedreferenceMillar, A.H., Sweetlove, L.J., Giegé, P. and Leaver, C.J. ( 2001 ) Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol. 127, 1711 – 1727.
dc.identifier.citedreferenceMurgas Torrazza, R., Suryawan, A., Gazzaneo, M.C., Orellana, R.A., Frank, J.W., Nguyen, H.V., Fiorotto, M.L., El‐Kadi, S. and Davis, T.A. ( 2010 ) Leucine supplementation of a low‐protein meal increases skeletal muscle and visceral tissue protein synthesis in neonatal pigs by stimulating mTOR‐dependent translation initiation. J. Nutr. 140, 2145 – 2152.
dc.identifier.citedreferenceMutwil, M., Obro, J., Willats, W.G. and Persson, S. ( 2008 ) GeneCAT‐novel webtools that combine BLAST and co‐expression analyses. Nucleic Acids Res. 36, W320 – W326.
dc.identifier.citedreferenceNoctor, G., Bergot, G., Mauve, C., Thominet, D., Lelarge‐Trouverie, C. and Prioul, J.‐L. ( 2007 ) A comparative study of amino acid measurement in leaf extracts by gas chromatography‐time of flight‐mass spectrometry and high performance liquid chromatography with fluorescence detection. Metabolomics, 3, 161 – 174.
dc.identifier.citedreferenceOverbeek, R., Begley, T., Butler, R.M. et   al. ( 2005 ) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691 – 5702.
dc.identifier.citedreferencePeng, C., Uygun, S., Shiu, S.H. and Last, R.L. ( 2015 ) The impact of the branched‐chain ketoacid dehydrogenase complex on amino acid homeostasis in Arabidopsis. Plant Physiol. 169, 1807 – 1820.
dc.identifier.citedreferencePires, M.V., Júnior, A.A., Medeiros, D.B. et   al. ( 2016 ) The influence of alternative pathways of respiration that utilize branched‐chain amino acids following water shortage in Arabidopsis. Plant Cell Environ. 39, 1304 – 1319.
dc.identifier.citedreferencePratelli, R. and Pilot, G. ( 2014 ) Regulation of amino acid metabolic enzymes and transporters in plants. J. Exp. Bot. 65, 5535 – 5556.
dc.identifier.citedreferenceReumann, S., Babujee, L., Ma, C., Wienkoop, S., Siemsen, T., Antonicelli, G.E., Rasche, N., Lüder, F., Weckwerth, W. and Jahn, O. ( 2007 ) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell, 19, 3170 – 3193.
dc.identifier.citedreferenceRodríguez, J.M., Ruíz‐Sala, P., Ugarte, M. and Peñalva, M.A. ( 2004 ) Fungal metabolic model for type I 3‐methylglutaconic aciduria. J. Biol. Chem. 279, 32385 – 32392.
dc.identifier.citedreferenceSchertl, P., Danne, L. and Braun, H.‐P. ( 2017 ) 3‐Hydroxyisobutyrate dehydrogenase is involved in both, valine and isoleucine degradation in Arabidopsis thaliana. Plant Physiol. 175, 51 – 61.
dc.identifier.citedreferenceSessions, A., Burke, E., Presting, G. et   al. ( 2002 ) A high‐throughput Arabidopsis reverse genetics system. Plant Cell, 14, 2985 – 2994.
dc.identifier.citedreferenceShimomura, Y., Murakami, T., Fujitsuka, N., Nakai, N., Sato, Y., Sugiyama, S., Shimomura, N., Irwin, J., Hawes, J.W. and Harris, R.A. ( 1994 ) Purification and partial characterization of 3‐hydroxyisobutyryl‐coenzyme A hydrolase of rat liver. J. Biol. Chem. 269, 14248 – 14253.
dc.identifier.citedreferenceSmall, I., Peeters, N., Legeai, F. and Lurin, C. ( 2004 ) Predotar: a tool for rapidly screening proteomes for N‐terminal targeting sequences. Proteomics, 4, 1581 – 1590.
dc.identifier.citedreferenceTaylor, N.L., Heazlewood, J.L., Day, D.A. and Millar, A.H. ( 2004 ) Lipoic acid‐dependent oxidative catabolism of alpha‐keto acids in mitochondria provides evidence for branched‐chain amino acid catabolism in Arabidopsis. Plant Physiol. 134, 838 – 848.
dc.identifier.citedreferenceVranová, E., Coman, D. and Gruissem, W. ( 2013 ) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 64, 665 – 700.
dc.identifier.citedreferenceWong, B.J. and Gerlt, J.A. ( 2004 ) Evolution of function in the crotonase superfamily: (3S)‐methylglutaconyl‐CoA hydratase from Pseudomonas putida. Biochemistry, 43, 4646 – 4654.
dc.identifier.citedreferenceXing, A. and Last, R.L. ( 2017 ) A regulatory hierarchy of the Arabidopsis branched‐chain amino acid metabolic network. Plant Cell, 29, 1480 – 1499.
dc.identifier.citedreferenceZhang, S., Chu, L., Qiao, S., Mao, X. and Zeng, X. ( 2016 ) Effects of dietary leucine supplementation in low crude protein diets on performance, nitrogen balance, whole‐body protein turnover, carcass characteristics and meat quality of finishing pigs. Anim. Sci. J. 87, 911 – 920.
dc.identifier.citedreferenceAlonso, J.M., Stepanova, A.N., Leisse, T.J. et   al. ( 2003 ) Genome‐wide insertional mutagenesis of Arabidopsis thaliana. Science, 301, 653 – 657.
dc.identifier.citedreferenceAngelovici, R., Lipka, A.E., Deason, N., Gonzalez‐Jorge, S., Lin, H., Cepela, J., Buell, R., Gore, M.A. and Dellapenna, D. ( 2013 ) Genome‐wide analysis of branched‐chain amino acid levels in Arabidopsis seeds. Plant Cell, 25, 4827 – 4843.
dc.identifier.citedreferenceAoki, Y., Okamura, Y., Tadaka, S., Kinoshita, K. and Obayashi, T. ( 2016 ) ATTED‐II in 2016: a plant coexpression database towards lineage‐specific coexpression. Plant Cell Physiol. 57, e5.
dc.identifier.citedreferenceAraújo, W.L., Ishizaki, K., Nunes‐Nesi, A. et   al. ( 2010 ) Identification of the 2‐hydroxyglutarate and isovaleryl‐CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell, 22, 1549 – 1563.
dc.identifier.citedreferenceAraújo, W.L., Tohge, T., Ishizaki, K., Leaver, C.J. and Fernie, A.R. ( 2011 ) Protein degradation – an alternative respiratory substrate for stressed plants. Trends Plant Sci. 16, 489 – 498.
dc.identifier.citedreferenceBannai, H., Tamada, Y., Maruyama, O., Nakai, K. and Miyano, S. ( 2002 ) Extensive feature detection of N‐terminal protein sorting signals. Bioinformatics, 18, 298 – 305.
dc.identifier.citedreferenceBinder, S. ( 2010 ) Branched‐chain amino acid metabolism in Arabidopsis thaliana. Arabidopsis Book, 8, e0137.
dc.identifier.citedreferenceBlock, A., Widhalm, J.R., Fatihi, A. et   al. ( 2014 ) The origin and biosynthesis of the benzenoid moiety of ubiquinone (Coenzyme Q) in Arabidopsis. Plant Cell, 26, 1938 – 1948.
dc.identifier.citedreferenceBradford, M.M. ( 1976 ) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein‐dye binding. Anal. Biochem. 72, 248 – 254.
dc.identifier.citedreferenceBrown, G.K., Hunt, S.M., Scholem, R., Fowler, K., Grimes, A., Mercer, J.F., Truscott, R.M., Cotton, R.G., Rogers, J.G. and Danks, D.M. ( 1982 ) Beta‐hydroxyisobutyryl coenzyme A deacylase deficiency: a defect in valine metabolism associated with physical malformations. Pediatrics, 70, 532 – 538.
dc.identifier.citedreferenceBuchanan‐Wollaston, V., Page, T., Harrison, E. et   al. ( 2005 ) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation‐induced senescence in Arabidopsis. Plant J. 42, 567 – 585.
dc.identifier.citedreferenceClough, S.J. and Bent, A.F. ( 1998 ) Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. Plant J. 16, 735 – 743.
dc.identifier.citedreferenceDi Rosa, G., Deodato, F., Loupatty, F.J. et   al. ( 2006 ) Hypertrophic cardiomyopathy, cataract, developmental delay, lactic acidosis: a novel subtype of 3‐methylglutaconic aciduria. J. Inherit. Metab. Dis. 29, 546 – 550.
dc.identifier.citedreferenceDing, G., Che, P., Ilarslan, H., Wurtele, E.S. and Nikolau, B.J. ( 2012 ) Genetic dissection of methylcrotonyl CoA carboxylase indicates a complex role for mitochondrial leucine catabolism during seed development and germination. Plant J. 70, 562 – 577.
dc.identifier.citedreferenceDisch, A., Hemmerlin, A., Bach, T.J. and Rohmer, M. ( 1998 ) Mevalonate‐derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY‐2 cells. Biochem. J. 331, 615 – 621.
dc.identifier.citedreferenceDucluzeau, A.‐L., Wamboldt, Y., Elowsky, C.G., Mackenzie, S.A., Schuurink, R.C. and Basset, G.J. ( 2012 ) Gene network reconstruction identifies the authentic trans‐prenyl diphosphate synthase that makes the solanesyl moiety of ubiquinone‐9 in Arabidopsis. Plant J. 69, 366 – 375.
dc.identifier.citedreferenceDunshea, F.R., Bauman, D.E., Nugent, E.A., Kerton, D.J., King, R.H. and McCauley, I. ( 2005 ) Hyperinsulinaemia, supplemental protein and branched‐chain amino acids when combined can increase milk protein yield in lactating sows. Br. J. Nutr. 93, 325 – 332.
dc.identifier.citedreferenceEmanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. ( 2000 ) Predicting subcellular localization of proteins based on their N‐terminal amino acid sequence. J. Mol. Biol. 300, 1005 – 1016.
dc.identifier.citedreferenceEngqvist, M.K., Kuhn, A., Wienstroer, J., Weber, K., Jansen, E.E., Jakobs, C., Weber, A.P. and Maurino, V.G. ( 2010 ) Plant D‐2‐hydroxyglutarate dehydrogenase participates in the catabolism of lysine especially during senescence. J. Biol. Chem. 286, 11382 – 11390.
dc.identifier.citedreferenceEubel, H., Meyer, E.H., Taylor, N.L., Bussell, J.D., O’Toole, N., Heazlewood, J.L., Castleden, I., Small, I.D., Smith, S.M. and Millar, A.H. ( 2008 ) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol. 148, 1809 – 1829.
dc.identifier.citedreferenceGalili, G., Avin‐Wittenberg, T., Angelovici, R. and Fernie, A.R. ( 2014 ) The role of photosynthesis and amino acid metabolism in the energy status during seed development. Front. Plant Sci. 5, 447.
dc.identifier.citedreferenceGalili, G., Amir, R. and Fernie, A.R. ( 2016 ) The regulation of essential amino acid synthesis and accumulation in plants. Annu. Rev. Plant Biol. 67, 153 – 178.
dc.identifier.citedreferenceGerbling, H. and Gerhardt, B. ( 1989 ) Peroxisomal degradation of branched‐chain 2‐oxo acids. Plant Physiol. 91, 1387 – 1392.
dc.identifier.citedreferenceGinger, M.L., Chance, M.L., Sadler, I.H. and Goad, L.J. ( 2001 ) The biosynthetic incorporation of the intact leucine skeleton into sterol by the trypanosomatid Leishmania mexicana. J. Biol. Chem. 276, 11674 – 11682.
dc.identifier.citedreferenceGipson, A.B., Morton, K.J., Rhee, R.J. et   al. ( 2017 ) Disruptions in valine degradation affect seed development and germination in Arabidopsis. Plant J. 90, 1029 – 1039.
dc.identifier.citedreferenceGu, L., Jones, A.D. and Last, R.L. ( 2010 ) Broad connections in the Arabidopsis seed metabolic network revealed by metabolite profiling of an amino acid catabolism mutant. Plant J. 61, 579 – 590.
dc.identifier.citedreferenceHildebrandt, T.M., Nunes Nesi, A., Araújo, W.L. and Braun, H.P. ( 2015 ) Amino acid catabolism in plants. Mol. Plant, 8, 1563 – 1579.
dc.identifier.citedreferenceHolden, H.M., Benning, M.M., Haller, T. and Gerlt, J.A. ( 2001 ) The crotonase superfamily: divergently related enzymes that catalyze different reactions involving acyl coenzyme a thioesters. Acc. Chem. Res. 34, 145 – 157.
dc.identifier.citedreferenceHorton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams‐Collier, C.J. and Nakai, K. ( 2007 ) WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35, W585 – W587.
dc.identifier.citedreferenceMurakami, T., Kaneko, T., Takeda, S., Inoue, S., Nomoto, S., Koshikawa, K., Nonami, T. and Nakao, A. ( 2001 ) Human liver disease decreases methacrylyl‐CoA hydratase and beta‐hydroxyisobutyryl‐CoA hydrolase activities in valine catabolism. Clin. Chim. Acta, 312, 115 – 121.
dc.identifier.citedreferenceIshizaki, K., Larson, T.R., Schauer, N., Fernie, A.R., Graham, I.A. and Leaver, C.J. ( 2005 ) The critical role of Arabidopsis electron‐transfer flavoprotein:ubiquinone oxidoreductase during dark‐induced starvation. Plant Cell, 17, 2587 – 2600.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.