Show simple item record

Atypical Antipsychotic Exposure May Not Differentiate Metabolic Phenotypes of Patients with Schizophrenia

dc.contributor.authorWard, Kristen M.
dc.contributor.authorYeoman, Larisa
dc.contributor.authorMcHugh, Cora
dc.contributor.authorKraal, A. Zarina
dc.contributor.authorFlowers, Stephanie A.
dc.contributor.authorRothberg, Amy E.
dc.contributor.authorKarnovsky, Alla
dc.contributor.authorDas, Arun K.
dc.contributor.authorEllingrod, Vicki L.
dc.contributor.authorStringer, Kathleen A.
dc.date.accessioned2018-07-13T15:46:51Z
dc.date.available2019-08-01T19:53:23Zen
dc.date.issued2018-06
dc.identifier.citationWard, Kristen M.; Yeoman, Larisa; McHugh, Cora; Kraal, A. Zarina; Flowers, Stephanie A.; Rothberg, Amy E.; Karnovsky, Alla; Das, Arun K.; Ellingrod, Vicki L.; Stringer, Kathleen A. (2018). "Atypical Antipsychotic Exposure May Not Differentiate Metabolic Phenotypes of Patients with Schizophrenia." Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 38(6): 638-650.
dc.identifier.issn0277-0008
dc.identifier.issn1875-9114
dc.identifier.urihttps://hdl.handle.net/2027.42/144610
dc.publisherWiley Periodicals, Inc.
dc.publisherR Foundation for Statistical Computing
dc.subject.otherInsulin
dc.subject.otherantipsychotics
dc.subject.otheradverse drug reactions
dc.titleAtypical Antipsychotic Exposure May Not Differentiate Metabolic Phenotypes of Patients with Schizophrenia
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPharmacy and Pharmacology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144610/1/phar2119_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144610/2/phar2119.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144610/3/phar2119-sup-0001-SupInfo.pdf
dc.identifier.doi10.1002/phar.2119
dc.identifier.sourcePharmacotherapy: The Journal of Human Pharmacology and Drug Therapy
dc.identifier.citedreferenceHumphrey LL, Fu R, Rogers K, Freeman M, Helfand M. Homocysteine level and coronary heart disease incidence: a systematic review and meta‐analysis. Mayo Clin Proc 2008; 83: 1203 – 12.
dc.identifier.citedreferenceRothberg AE, McEwen LN, Kraftson AT, et al. The impact of weight loss on health‐related quality‐of‐life: implications for cost‐effectiveness analyses. Qual Life Res 2014; 23: 1371 – 6.
dc.identifier.citedreferenceRothberg AE, McEwen LN, Kraftson AT, Fowler CE, Herman WH. Very‐low‐energy diet for type 2 diabetes: an underutilized therapy? J Diabetes Complications 2014; 28: 506 – 10.
dc.identifier.citedreferenceStringer KA, Younger JG, McHugh C, et al. Whole blood reveals more metabolic detail of the human metabolome than serum as measured by 1H‐NMR spectroscopy. Shock 2015; 44: 200 – 8.
dc.identifier.citedreferenceObi AT, Stringer KA, Diaz JA, et al. 1D‐ 1 H‐nuclear magnetic resonance metabolomics reveals age‐related changes in metabolites associated with experimental venous thrombosis. J Vasc Surg Venous Lymphat Disord 2016; 4: 221 – 30.
dc.identifier.citedreferenceStringer KA, Serkova NJ, Karnovsky A, et al. Metabolic consequences of sepsis‐induced acute lung injury revealed by plasma 1 H‐nuclear magnetic resonance quantitative metabolomics and computational analysis. Am J Physiol Lung Cell Mol Physiol 2011; 300: L4 – 11.
dc.identifier.citedreferenceLacy P, McKay RT, Finkel M, et al. Signal intensities derived from different NMR probes and parameters contribute to variations in quantification of metabolites. PLoS ONE 2014; 9: e85732.
dc.identifier.citedreferenceDas AK, Hajra AK. Quantification, characterization and fatty acid composition of lysophosphatidic acid in different rat tissues. Lipids 1989; 24: 329 – 33.
dc.identifier.citedreferenceXia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res 2015; 43: W251 – 7.
dc.identifier.citedreferencevan den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genom 2006; 7: 142.
dc.identifier.citedreferenceStorey JD. The positive false discovery rate: a bayesian interpretation and the q‐value 1. Ann Stat 2003; 31: 2013 – 35.
dc.identifier.citedreferenceGao J, Tarcea VG, Karnovsky A, et al. Metscape: a Cytoscape plug‐in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics 2010; 26: 971 – 3.
dc.identifier.citedreferenceR Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014.
dc.identifier.citedreferenceMayer EL, Jacobsen DW, Robinson K. Homocysteine and coronary atherosclerosis. J Am Coll Cardiol 1996; 27: 517 – 27.
dc.identifier.citedreferenceAssies J, Mocking RJ, Lok A, et al. Effects of oxidative stress on fatty acid‐ and one‐carbon‐metabolism in psychiatric and cardiovascular disease comorbidity. Acta Psychiatr Scand 2014; 130: 163 – 80.
dc.identifier.citedreferenceEllingrod VL, Taylor SF, Brook RD, et al. Dietary, lifestyle and pharmacogenetic factors associated with arteriole endothelial‐dependent vasodilatation in schizophrenia patients treated with atypical antipsychotics (AAPs). Schizophr Res 2011; 130: 20 – 6.
dc.identifier.citedreferenceEllingrod VL, Miller DD, Taylor SF, et al. Metabolic syndrome and insulin resistance in schizophrenia patients receiving antipsychotics genotyped for the methylenetetrahydrofolate reductase (MTHFR) 677C/T and 1298A/C variants. Schizophr Res 2008; 98: 47 – 54.
dc.identifier.citedreferenceEllingrod VL, Grove TB, Burghardt KJ, Taylor SF, Dalack G. The effect of folate supplementation and genotype on cardiovascular and epigenetic measures in schizophrenia subjects. NPJ Schizophr 2015; 1: 15046.
dc.identifier.citedreferenceda Silva RP, Kelly KB, Al Rajabi A, Jacobs RL. Novel insights on interactions between folate and lipid metabolism. BioFactors 2014; 40: 277 – 83.
dc.identifier.citedreferenceKhaw K‐T, Friesen MD, Riboli E, Luben R, Wareham N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: the EPIC‐Norfolk prospective study. PLoS Med 2012; 9: e1001255.
dc.identifier.citedreferenceKahn RS, Fleischhacker WW, Boter H, et al. Effectiveness of antipsychotic drugs in first‐episode schizophrenia and schizophreniform disorder: an open randomised clinical trial. Lancet 2008; 371: 1085 – 97.
dc.identifier.citedreferenceMcEvoy J, Baillie RA, Zhu H, et al. Lipidomics reveals early metabolic changes in subjects with schizophrenia: effects of atypical antipsychotics. PLoS ONE 2013; 8: e68717.
dc.identifier.citedreferenceSuvitaival T, Mantere O, Kieseppä T, et al. Serum metabolite profile associates with the development of metabolic co‐morbidities in first‐episode psychosis. Transl Psychiatry 2016; 6: e951.
dc.identifier.citedreferenceCorrell CU, Robinson DG, Schooler NR, et al. Cardiometabolic risk in patients with first‐episode schizophrenia spectrum disorders. JAMA Psychiatry 2014; 71: 1350.
dc.identifier.citedreferenceMisiak B, Frydecka D, Łaczmański Ł, Ślęzak R, Kiejna A. Effects of second‐generation antipsychotics on selected markers of one‐carbon metabolism and metabolic syndrome components in first‐episode schizophrenia patients. Eur J Clin Pharmacol 2014; 70: 1433 – 41.
dc.identifier.citedreferenceChesler EJ, Lu L, Shou S, et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 2005; 37: 233 – 42.
dc.identifier.citedreferenceHennekens CH, Hennekens AR, Hollar D, Casey DE. Schizophrenia and increased risks of cardiovascular disease. Am Heart J 2005; 150: 1115 – 21.
dc.identifier.citedreferenceRingen PA, Engh JA, Birkenaes AB, Dieset I, Andreassen OA. Increased mortality in schizophrenia due to cardiovascular disease—a non‐systematic review of epidemiology, possible causes, and interventions. Front Psychiatry 2014; 5: 137.
dc.identifier.citedreferenceGrundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005; 112: 2735 – 52.
dc.identifier.citedreferenceAmerican Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, North American Association for the Study of Obesity. Consensus development conference on antipsychotic drugs and obesity and diabetes. J Clin Psychiatry 2004; 65 ( 2 ): 267 – 72.
dc.identifier.citedreferenceMitchell AJ, Delaffon V, Vancampfort D, Correll CU, De Hert M. Guideline concordant monitoring of metabolic risk in people treated with antipsychotic medication: systematic review and meta‐analysis of screening practices. Psychol Med 2012; 42: 125 – 47.
dc.identifier.citedreferenceWeyer C, Hanson RL, Tataranni PA, Bogardus C, Pratley RE. A high fasting plasma insulin concentration predicts type 2 diabetes independent of insulin resistance: evidence for a pathogenic role of relative hyperinsulinemia. Diabetes 2000; 49: 2094 – 101.
dc.identifier.citedreferenceJohnson J, Duick D, Chui M, Aldasouqi S. Identifying prediabetes using fasting insulin levels. Endocr Pract 2010; 16: 47 – 52.
dc.identifier.citedreferenceHenderson DC, Cagliero E, Copeland PM, et al. Glucose metabolism in patients with schizophrenia treated with atypical antipsychotic agents. Arch Gen Psychiatry 2005; 62: 19 – 28.
dc.identifier.citedreferenceHouseknecht KL, Robertson AS, Zavadoski W, et al. Acute effects of atypical antipsychotics on whole‐body insulin resistance in rats: implications for adverse metabolic effects. Neuropsychopharmacology 2007; 32: 289 – 97.
dc.identifier.citedreferenceHuang PL. A comprehensive definition for metabolic syndrome. Dis Model Mech 2009; 2: 231 – 7.
dc.identifier.citedreferenceFirst MB, Spitzer RL, Miriam G, Williams JB. Structured clinical interview for DSM‐IV‐TR Axis I disorders, research version. (SCID‐I/P) New York, NY: Biometrics Research, New York State Psychiatric Institute, 2002.
dc.identifier.citedreferenceAndreasen NC, Pressler M, Nopoulos P, Miller D, Ho B‐C. Antipsychotic dose equivalents and dose‐years: a standardized method for comparing exposure to different drugs. Biol Psychiatry 2010; 67: 255 – 62.
dc.identifier.citedreferenceWoods SW. Chlorpromazine equivalent doses for atypical antipsychotics: an update 2003–2010. Available from http://scottwilliamwoods.com/files/WoodsEquivUpdate.doc.
dc.identifier.citedreferenceMeyer JM, Ng‐Mak DS, Chuang C‐C, Rajagopalan K, Loebel A. Weight changes before and after lurasidone treatment: a real‐world analysis using electronic health records. Ann Gen Psychiatry 2017; 16: 36.
dc.identifier.citedreferenceDe Hert M, Yu W, Detraux J, et al. Body weight and metabolic adverse effects of asenapine, iloperidone, lurasidone and paliperidone in the treatment of schizophrenia and bipolar disorder. CNS Drugs 2012; 26: 733 – 59.
dc.identifier.citedreferenceMaayan L, Correll CU. Management of antipsychotic‐related weight gain. Expert Rev Neurother 2010; 10: 1175 – 200.
dc.identifier.citedreferenceParsons B, Allison DB, Loebel A, et al. Weight effects associated with antipsychotics: a comprehensive database analysis. Schizophr Res 2009; 110: 103 – 10.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.