Show simple item record

Comparison of Global Martian Plasma Models in the Context of MAVEN Observations

dc.contributor.authorEgan, Hilary
dc.contributor.authorMa, Yingjuan
dc.contributor.authorDong, Chuanfei
dc.contributor.authorModolo, Ronan
dc.contributor.authorJarvinen, Riku
dc.contributor.authorBougher, Stephen
dc.contributor.authorHalekas, Jasper
dc.contributor.authorBrain, David
dc.contributor.authorMcfadden, James
dc.contributor.authorConnerney, John
dc.contributor.authorMitchell, David
dc.contributor.authorJakosky, Bruce
dc.date.accessioned2018-07-13T15:46:56Z
dc.date.available2019-07-01T14:52:17Zen
dc.date.issued2018-05
dc.identifier.citationEgan, Hilary; Ma, Yingjuan; Dong, Chuanfei; Modolo, Ronan; Jarvinen, Riku; Bougher, Stephen; Halekas, Jasper; Brain, David; Mcfadden, James; Connerney, John; Mitchell, David; Jakosky, Bruce (2018). "Comparison of Global Martian Plasma Models in the Context of MAVEN Observations." Journal of Geophysical Research: Space Physics 123(5): 3714-3726.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/144615
dc.description.abstractGlobal models of the interaction of the solar wind with the Martian upper atmosphere have proved to be valuable tools for investigating both the escape to space of the Martian atmosphere and the physical processes controlling this complex interaction. The many models currently in use employ different physical assumptions, but it can be difficult to directly compare the effectiveness of the models since they are rarely run for the same input conditions. Here we present the results of a model comparison activity, where five global models (single‐fluid MHD, multifluid MHD, multifluid electron pressure MHD, and two hybrid models) were run for identical conditions corresponding to a single orbit of observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. We find that low‐altitude ion densities are very similar across all models and are comparable to MAVEN ion density measurements from periapsis. Plasma boundaries appear generally symmetric in all models and vary only slightly in extent. Despite these similarities there are clear morphological differences in ion behavior in other regions such as the tail and southern hemisphere. These differences are observable in ion escape loss maps and are necessary to understand in order to accurately use models in aiding our understanding of the Martian plasma environment.Key PointsVarious Martian plasma models show clear morphological differences in the state of the global plasmaComparing these models with MAVEN data shows what physics is necessary to model different physical regionsModeled escape rates compare well with each other and with estimates from data, despite morphological differences in escaping ion flux maps
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.titleComparison of Global Martian Plasma Models in the Context of MAVEN Observations
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144615/1/jgra54244.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144615/2/jgra54244_am.pdf
dc.identifier.doi10.1029/2017JA025068
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceMa, Y. J., Russell, C. T., Nagy, A. F., Toth, G., Dougherty, M. K., Wellbrock, A., et al. ( 2011 ). The importance of thermal electron heating in Titan’s ionosphere: Comparison with Cassini T34 flyby. Journal of Geophysical Research, 116, a10213. https://doi.org/10.1029/2011JA016657
dc.identifier.citedreferenceLiemohn, M. W., Ma, Y., Frahm, R. A., Fang, X., Kozyra, J. U., Nagy, A. F., et al. ( 2006 ). Mars global MHD predictions of magnetic connectivity between the dayside ionosphere and the magnetospheric flanks. Space Science Reviews, 126, 63 – 76. https://doi.org/10.1007/s11214-006-9116-8
dc.identifier.citedreferenceLundin, R., Zakharov, A., Pellinen, R., Borg, H., Hultqvist, B., Pissarenko, N., et al. ( 1989 ). First measurements of the ionospheric plasma escape from Mars. Nature, 341, 609 – 612. https://doi.org/10.1038/341609a0
dc.identifier.citedreferenceMa, Y., Fang, X., Russell, C. T., Nagy, A. F., Toth, G., Luhmann, J. G., et al. ( 2014 ). Effects of crustal field rotation on the solar wind plasma interaction with Mars. Geophysical Research Letters, 41, 6563 – 6569. https://doi.org/10.1002/2014GL060785
dc.identifier.citedreferenceMa, Y., Nagy, A. F., Sokolov, I. V., & Hansen, K. C. ( 2004 ). Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. Journal of Geophysical Research, 109, A07211. https://doi.org/10.1029/2003JA010367
dc.identifier.citedreferenceMa, Y., Russell, C., Fang, X., Dong, Y., Nagy, A. F., Toth, G., et al. ( 2015 ). MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations. Geophysical Research Letters, 42, 9113 – 9120. https://doi.org/10.1002/2015GL065218
dc.identifier.citedreferenceMa, Y., Russell, C. T., Nagy, A. F., Toth, G., Dong, C., & Bougher, S. W. ( 2013 ). Multi‐fluid MHD study of the solar wind induced plasma escape from the Martian atmosphere. Abstract P13C-05 Presented at the 2013 AGU Fall Meeting, San Francisco, CA.
dc.identifier.citedreferenceMa, Y. J., Russell, C. T., Fang, X., Dong, C. F., Nagy, A. F., Toth, G., et al. ( 2017 ). Variations of the Martian plasma environment during the ICME passage on 8 March 2015: A time‐dependent MHD, study. Journal of Geophysical Research: Space Physics, 122, 1714 – 1730. https://doi.org/10.1002/2016JA023402
dc.identifier.citedreferenceMahaffy, P. R., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., et al. ( 2015 ). The neutral gas and ion mass spectrometer on the Mars Atmosphere and Volatile Evolution Mission. Space Science Reviews, 195, 49 – 73. https://doi.org/10.1007/s11214-014-0091-1
dc.identifier.citedreferenceMcFadden, J. P., Kortmann, O., Curtis, D., Dalton, G., Johnson, G., Abiad, R., et al. ( 2015 ). MAVEN SupraThermal and Thermal Ion Compostion (STATIC) instrument. Space Science Reviews, 195, 199 – 256. https://doi.org/10.1007/s11214-015-0175-6
dc.identifier.citedreferenceMitchell, D. L., Mazelle, C., Sauvaud, J.‐A., Thocaven, J.‐J., Rouzaud, J., Fedorov, A., et al. ( 2016 ). The MAVEN solar wind electron analyzer. Space Science Reviews, 200, 495 – 528. https://doi.org/10.1007/s11214-015-0232-1
dc.identifier.citedreferenceModolo, R., Chanteur, G. M., Dubinin, E., & Matthews, A. P. ( 2005 ). Influence of the solar EUV flux on the Martian plasma environment. Annales Geophysicae, 23, 433 – 444. https://doi.org/10.5194/angeo-23-433-2005
dc.identifier.citedreferenceModolo, R., Chanteur, G. M., Dubinin, E., & Matthews, A. P. ( 2006 ). Simulated solar wind plasma interaction with the Martian exosphere: Influence of the solar EUV flux on the bow shock and the magnetic pile‐up boundary. Annales Geophysicae, 24 ( 12 ), 3403 – 3410. https://doi.org/10.5194/angeo-24-3403-2006
dc.identifier.citedreferenceModolo, R., Hess, S., Mancini, M., Leblanc, F., Chaufray, J.‐Y., Brain, D., et al. ( 2016 ). Mars‐solar wind interaction: Lathys, an improved parallel 3‐D multispecies hybrid model. Journal of Geophysical Research: Space Physics, 121, 6378 – 6399. https://doi.org/10.1002/2015JA022324
dc.identifier.citedreferenceNagy, A. F., Winterhalter, D., Sauer, K., Cravens, T. E., Brecht, S., Mazelle, C., et al. ( 2004 ). The plasma environment of Mars. Space Science Reviews, 111, 33 – 114. https://doi.org/10.1023/B:SPAC.0000032718.47512.92
dc.identifier.citedreferenceNajib, D., Nagy, A. F., Tóth, G., & Ma, Y. ( 2011 ). Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars. Journal of Geophysical Research, 116, A05204. https://doi.org/10.1029/2010JA016272
dc.identifier.citedreferenceRamstad, R., Barabash, S., Futaana, Y., Nilsson, H., & Holmström, M. ( 2016 ). Effects of the crustal magnetic fields on the Martian atmospheric ion escape rate. Geophysical Research Letters, 43, 10,574 – 10,579. https://doi.org/10.1002/2016GL070135
dc.identifier.citedreferenceRamstad, R., Barabash, S., Futaana, Y., Nilsson, H., Wang, X.‐D., & Holmström, M. ( 2015 ). The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations. Journal of Geophysical Research: Planets, 120, 1298 – 1309. https://doi.org/10.1002/2015JE004816
dc.identifier.citedreferenceRichards, P. G., Fennelly, J. A., & Torr, D. G. ( 1994 ). EUVAC: A solar EUV flux model for aeronomic calculations. Journal of Geophysical Research, 99 ( A5 ), 8981 – 8992. https://doi.org/10.1029/94JA00518
dc.identifier.citedreferenceSchunk, R., & Nagy, A. ( 2000 ). Ionospheres: Physics, plasma physics and chemistry. Cambridge Atmospheric and Space Science Series: Cambridge University Press.
dc.identifier.citedreferenceSimon, S., Boesswetter, A., Bagdonat, T., & Motschmann, U. ( 2007 ). Physics of the ion composition boundary: A comparative 3‐D hybrid simulation study of Mars and Titan. Annales Geophysicae, 25, 99 – 115. https://doi.org/10.5194/angeo-25-99-2007
dc.identifier.citedreferenceSpreiter, J., Summers, A., & Rizzi, A. ( 1970 ). Solar wind flow past nonmagnetic planets—Venus and Mars. Planetary and Space Science, 18, 1281 – 1299.
dc.identifier.citedreferenceTerada, N., Shinagawa, H., Tanaka, T., Murawski, K., & Terada, K. ( 2009 ). A three‐dimensional, multispecies, comprehensive MHD model of the solar wind interaction with the planet Venus. Journal of Geophysical Research, 114, a09208. https://doi.org/10.1029/2008JA013937
dc.identifier.citedreferenceTrotignon, J. G., Mazelle, C., Bertucci, C., & Acuña, M. H. ( 2006 ). Martian shock and magnetic pile‐up boundary positions and shapes determined from the Phobos 2 and Mars global surveyor data sets. Planetary and Space Science, 54, 357 – 369. https://doi.org/10.1016/j.pss.2006.01.003
dc.identifier.citedreferenceWang, X.‐D., Alho, M., Jarvinen, R., Kallio, E., Barabash, S., & Futaana, Y. ( 2016 ). Emission of hydrogen energetic neutral atoms from the Martian subsolar magnetosheath. Journal of Geophysical Research: Space Physics, 121, 190 – 204. https://doi.org/10.1002/2015JA021653
dc.identifier.citedreferenceWang, X.‐D., Barabash, S., Futaana, Y., Grigoriev, A., & Wurz, P. ( 2014 ). Influence of Martian crustal magnetic anomalies on the emission of energetic neutral hydrogen atoms. Journal of Geophysical Research: Space Physics, 119, 8600 – 8609. https://doi.org/10.1002/2014JA020307
dc.identifier.citedreferenceArkani‐Hamed, J. ( 2001 ). A 50‐degree spherical harmonic model of the magnetic field of Mars. Journal of Geophysical Research, 106, 23,197 – 23,208. https://doi.org/10.1029/2000JE001365
dc.identifier.citedreferenceBarabash, S., Fedorov, A., Lundin, R., & Sauvaud, J.‐A. ( 2007 ). Martian atmospheric erosion rates. Science, 315, 501 – 503. https://doi.org/10.1126/science.1134358
dc.identifier.citedreferenceBertucci, C., Mazelle, C., Acuña, M., Russell, C., & Slavin, J. ( 2005 ). Structure of the magnetic pileup boundary at Mars and Venus. Journal of Geophysical Research, 110, A01209. https://doi.org/10.1029/2004JA010592
dc.identifier.citedreferenceBößwetter, A., Bagdonat, T., Motschmann, U., & Sauer, K. ( 2004 ). Plasma boundaries at Mars: A 3‐D simulation study. Annales Geophysicae, 22, 4363 – 4379. https://doi.org/10.5194/angeo-22-4363-2004
dc.identifier.citedreferenceBoesswetter, A., Lammer, H., Kulikov, Y., Motschmann, U., & Simon, S. ( 2010 ). Non‐thermal water loss of the early Mars: 3D multi‐ion hybrid simulations. Planetary and Space Science, 58, 2031 – 2043. https://doi.org/10.1016/j.pss.2010.10.003
dc.identifier.citedreferenceBougher, S. W., Pawlowski, D., Bell, J. M., Nelli, S., McDunn, T., Murphy, J. R., et al. ( 2015 ). Mars global ionosphere‐thermosphere model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. Journal of Geophysical Research: Planets, 120, 311 – 342. https://doi.org/10.1002/2014JE004715
dc.identifier.citedreferenceBrain, D., Barabash, S., Boesswetter, A., Bougher, S., Brecht, S., Chanteur, G., et al. ( 2010 ). A comparison of global models for the solar wind interaction with Mars. Icarus, 206, 139 – 151. https://doi.org/10.1016/j.icarus.2009.06.030
dc.identifier.citedreferenceBrain, D., McFadden, J. P., Halekas, J. S., Connerney, J. E. P., Bougher, S. W., Curry, S., et al. ( 2015 ). The spatial distribution of planetary ion fluxes near Mars observed by MAVEN. Geophysical Research Letters, 42, 9142 – 9148. https://doi.org/10.1002/2015GL065293
dc.identifier.citedreferenceBrecht, S. H., & Ledvina, S. A. ( 2014 ). The role of the Martian crustal magnetic fields in controlling ionospheric loss. Geophysical Research Letters, 41, 5340 – 5346. https://doi.org/10.1002/2014GL060841
dc.identifier.citedreferenceBrecht, S. H., Ledvina, S. A., & Bougher, S. W. ( 2016 ). Ionospheric loss from Mars as predicted by hybrid particle simulations. Journal of Geophysical Research: Space Physics, 121, 10,190 – 10,208. https://doi.org/10.1002/2016JA022548
dc.identifier.citedreferenceCain, J. C., Ferguson, B. B., & Mozzoni, D. ( 2003 ). An n = 90 internal potential function of the Martian crustal magnetic field. Journal of Geophysical Research, 108 ( E2 ), 5008. https://doi.org/10.1029/2000JE001487
dc.identifier.citedreferenceChanteur, G. M., Dubinin, E., Modolo, R., & Fraenz, M. ( 2009 ). Capture of solar wind alpha‐particles by the Martian atmosphere. Geophysical Research Letters, 36, L23105. https://doi.org/10.1029/2009GL040235
dc.identifier.citedreferenceChaufray, J. Y., Bertaux, J. L., Leblanc, F., & Quémerais, E. ( 2008 ). Observation of the hydrogen corona with SPICAM on Mars Express. Icarus, 195, 598 – 613. https://doi.org/10.1016/j.icarus.2008.01.009
dc.identifier.citedreferenceConnerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., & Sheppard, D. ( 2015 ). The MAVEN magnetic field investigation. Space Science Reviews, 195, 257 – 291. https://doi.org/10.1007/s11214-015-0169-4
dc.identifier.citedreferenceCravens, T. E., Hoppe, A., Ledvina, S. A., & McKenna‐Lawlor, S. ( 2002 ). Pickup ions near Mars associated with escaping oxygen atoms. Journal of Geophysical Research, 107 ( A8 ), 1170. https://doi.org/10.1029/2001JA000125
dc.identifier.citedreferenceDong, C., Bougher, S. W., Ma, Y., Toth, G., Lee, Y., Nagy, A. F., et al. ( 2015 ). Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations. Journal of Geophysical Research: Space Physics, 120, 7857 – 7872. https://doi.org/10.1002/2015JA020990
dc.identifier.citedreferenceDong, C., Ma, Y., Bougher, S. W., Toth, G., Nagy, A. F., Halekas, J. S., et al. ( 2015 ). Multifluid MHD study of the solar wind interaction with Mars’ upper atmosphere during the 2015 March 8th ICME event. Geophysical Research Letters, 42, 9103 – 9112. https://doi.org/10.1002/2015GL065944
dc.identifier.citedreferenceDong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E., et al. ( 2015 ). Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel. Geophysical Research Letters, 42, 8942 – 8950. https://doi.org/10.1002/2015GL065346
dc.identifier.citedreferenceDryer, M., & Heckman, G. ( 1967 ). On the hypersonic analogue as applied to planetary interaction with the solar plasma. Planetary and Space Science, 15, 515 – 546.
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Fedorov, A., Lundin, R., Edberg, N., Duru, F., & Vaisberg, O. ( 2011 ). Ion energization and escape on Mars and Venus. Space Science Reviews, 162, 173 – 211. https://doi.org/10.1007/s11214-011-9831-7
dc.identifier.citedreferenceFang, X., Liemohn, M. W., Nagy, A. F., Luhmann, J. G., & Ma, Y. ( 2010 ). On the effect of the Martian crustal magnetic field on atmospheric erosion. Icarus, 206, 130 – 138. https://doi.org/10.1016/j.icarus.2009.01.012
dc.identifier.citedreferenceFang, X., Liemohn, M. W., Nagy, A. F., Ma, Y., De Zeeuw, D. L., Kozyra, J. U., & Zurbuchen, T. H. ( 2008 ). Pickup oxygen ion velocity space and spatial distribution around Mars. Journal of Geophysical Research, 113, a02210. https://doi.org/10.1029/2007JA012736
dc.identifier.citedreferenceFang, X., Ma, Y., Brain, D., Dong, Y., & Lillis, R. ( 2015 ). Control of Mars global atmospheric loss by the continuous rotation of the crustal magnetic field: A time‐dependent MHD study. Journal of Geophysical Research: Space Physics, 120, 10,926 – 10,944. https://doi.org/10.1002/2015JA021605
dc.identifier.citedreferenceFränz, M., Dubinin, E., Andrews, D., Barabash, S., Nilsson, H., & Fedorov, A. ( 2015 ). Cold ion escape from the Martian ionosphere. Planetary and Space Science, 119, 92 – 102. https://doi.org/10.1016/j.pss.2015.07.012
dc.identifier.citedreferenceGlocer, A., Tóth, G., Ma, Y., Gombosi, T., Zhang, J.‐C., & Kistler, L. M. ( 2009 ). Multifluid block‐adaptive‐tree solar wind Roe‐type upwind scheme: Magnetospheric composition and dynamics during geomagnetic storms—Initial results. Journal of Geophysical Research, 114, A12203. https://doi.org/10.1029/2009JA014418
dc.identifier.citedreferenceGonzález‐Galindo, F., Forget, F., López‐Valverde, M. A., Angelats I Coll, M., & Bougher, S. W. ( 2007 ). LMD‐MGCM: The first ground‐to‐exosphere general circulation model of the Martian atmosphere. In Seventh International Conference on Mars, LPI Contributions, No. 1353, Pasadena, California, pp. 3099.
dc.identifier.citedreferenceGunell, H., Holmström, M., Barabash, S., Kallio, E., Janhunen, P., Nagy, A. F., & Ma, Y. ( 2006 ). Planetary ENA imaging: Effects of different interaction models for Mars. Planetary and Space Science, 54, 117 – 131. https://doi.org/10.1016/j.pss.2005.04.002
dc.identifier.citedreferenceGunell, H., Holmström, M., Kallio, E., Janhunen, P., & Dennerl, K. ( 2004 ). X rays from solar wind charge exchange at Mars: A comparison of simulations and observations. Geophysical Research Letters, 31, L22801. https://doi.org/10.1029/2004GL020953
dc.identifier.citedreferenceHalekas, J. S., Taylor, E. R., Dalton, G., Johnson, G., Curtis, D. W., McFadden, J. P., et al. ( 2015 ). The solar wind ion analyzer for MAVEN. Space Science Reviews, 195, 125 – 151. https://doi.org/10.1007/s11214-013-0029-z
dc.identifier.citedreferenceHarnett, E. M., & Winglee, R. M. ( 2007 ). High‐resolution multifluid simulations of the plasma environment near the Martian magnetic anomalies. Journal of Geophysical Research, 112, a05207. https://doi.org/10.1029/2006JA012001
dc.identifier.citedreferenceHolmstrom, M., & Wang, X.‐D. ( 2015 ). Mars as a comet: Solar wind interaction on a large scale. Planetary and Space Science, 119, 43 – 47. https://doi.org/10.1016/j.pss.2015.09.017
dc.identifier.citedreferenceHurrell, J. W. ( 1995 ). Comparison of NCAR community climate model (CCM) climates. Climate Dynamics, 11 ( 1 ), 25 – 50. https://doi.org/10.1007/BF00220675
dc.identifier.citedreferenceJakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., et al. ( 2015 ). The Mars Atmosphere and Volatile Evolution ( MAVEN) mission. Space Science Reviews, 195, 3 – 48. https://doi.org/10.1007/s11214-015-0139-x
dc.identifier.citedreferenceJarvinen, R., Brain, D. A., & Luhmann, J. G. ( 2016 ). Dynamics of planetary ions in the induced magnetospheres of Venus and Mars. Planetary and Space Science, 127, 1 – 14. https://doi.org/10.1016/j.pss.2015.08.012
dc.identifier.citedreferenceJarvinen, R., Brain, D., Modolo, R., Fedorov, A., & Holmström, M. ( 2018 ). Oxygen ion energization at Mars: Comparison of MAVEN and Mars Express observations to global hybrid simulation. Journal of Geophysical Research: Space Physics, 123, 1678 – 1689. https://doi.org/10.1002/2017JA024884
dc.identifier.citedreferenceKallio, E., Barabash, S., Brinkfeldt, K., Gunell, H., Holmström, M., Futaana, Y., et al. ( 2006 ). Energetic neutral atoms (ENA) at Mars: Properties of the hydrogen atoms produced upstream of the Martian bow shock and implications for ENA sounding technique around non‐magnetized planets. Icarus, 182 ( 2 ), 448 – 463. https://doi.org/10.1016/j.icarus.2005.12.019
dc.identifier.citedreferenceKallio, E., Fedorov, A., Budnik, E., Säles, T., Janhunen, P., Schmidt, W., et al. ( 2006 ). Ion escape at Mars: Comparison of a 3‐D hybrid simulation with Mars Express IMA/ASPERA‐3 measurements. Icarus, 182 ( 2 ), 350 – 359. https://doi.org/10.1016/j.icarus.2005.09.018
dc.identifier.citedreferenceKallio, E., & Janhunen, P. ( 2002 ). Ion escape from Mars in a quasi‐neutral hybrid model. Journal of Geophysical Research, 107 ( A3 ), 1035. https://doi.org/10.1029/2001JA000090
dc.identifier.citedreferenceKim, J.‐H., Agertz, O., Teyssier, R., Butler, M. J., Ceverino, D., Choi, J.‐H., et al. ( 2016 ). The AGORA high‐resolution galaxy simulations comparison project. II. Isolated disk test. Astrophysical Journal, 833, 202. https://doi.org/10.3847/1538-4357/833/2/202
dc.identifier.citedreferenceLedvina, S., Ma, Y., & Kallio, E. ( 2008 ). Modeling and simulating flowing plasmas and related phenomena. Space Science Reviews, 139 ( 1–4 ), 143 – 189. https://doi.org/10.1007/s11214-008-9384-6
dc.identifier.citedreferenceLee, Y., Combi, M. R., Tenishev, V., Bougher, S. W., & Lillis, R. J. ( 2015 ). Hot oxygen corona at Mars and the photochemical escape of oxygen: Improved description of the thermosphere, ionosphere, and exosphere. Journal of Geophysical Research: Planets, 120, 1880 – 1892. https://doi.org/10.1002/2015JE004890
dc.identifier.citedreferenceLiemohn, M. W., Curry, S. M., Fang, X., & Ma, Y. ( 2013 ). Comparison of high‐altitude production and ionospheric outflow contributions to O + loss at Mars. Journal of Geophysical Research: Space Physics, 118, 4093 – 4107. https://doi.org/10.1002/jgra.50388
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.