Show simple item record

The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks

dc.contributor.authorDamron, Joshua T.
dc.contributor.authorMa, Jialiu
dc.contributor.authorKurz, Ricardo
dc.contributor.authorSaalwächter, Kay
dc.contributor.authorMatzger, Adam J.
dc.contributor.authorRamamoorthy, Ayyalusamy
dc.date.accessioned2018-07-13T15:46:57Z
dc.date.available2019-09-04T20:15:39Zen
dc.date.issued2018-07-09
dc.identifier.citationDamron, Joshua T.; Ma, Jialiu; Kurz, Ricardo; Saalwächter, Kay ; Matzger, Adam J.; Ramamoorthy, Ayyalusamy (2018). "The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks." Angewandte Chemie International Edition 57(28): 8678-8681.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/144616
dc.description.abstractThe robust synthetic flexibility of metal–organic frameworks (MOFs) offers a promising class of tailorable materials, for which the ability to tune specific physicochemical properties is highly desired. This is achievable only through a thorough description of the consequences for chemical manipulations both in structure and dynamics. Magic angle spinning solid‐state NMR spectroscopy offers many modalities in this pursuit, particularly for dynamic studies. Herein, we employ a separated‐local‐field NMR approach to show how specific intraframework chemical modifications to MOF UiO‐66 heavily modulate the dynamic evolution of the organic ring moiety over several orders of magnitude.Intraframework ring rotations in metal–organic frameworks have been sensitively detected by dipolar dephasing over the rotor period in magic angle spinning solid‐state NMR experiments. Information on the dynamics within MOFs is important, because the rate of rotational motions of linkers affects sorption and separation properties of MOFs.
dc.publisherBlackwell Science Ltd
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdynamics
dc.subject.otherNMR spectroscopy
dc.subject.othermetal–organic frameworks
dc.subject.othermicroporous materials
dc.subject.otherdensity functional theory
dc.titleThe Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144616/1/anie201805004.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144616/2/anie201805004-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144616/3/anie201805004_am.pdf
dc.identifier.doi10.1002/anie.201805004
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceM. G. Munowitz, R. G. Griffin, G. Bodenhausen, T. H. Huang, J. Am. Chem. Soc. 1981, 103, 2529 – 2533.
dc.identifier.citedreferenceA. S. Tayi, A. Kaeser, M. Matsumoto, T. Aida, S. I. Stupp, Nat. Chem. 2015, 7, 281 – 294.
dc.identifier.citedreferenceF. Moreau, D. I. Kolokolov, A. G. Stepanov, T. L. Easun, A. Dailly, W. Lewis, A. J. Blake, H. Nowell, M. J. Lennox, E. Besley, et al., Proc. Natl. Acad. Sci. USA 2017, 114, 3056 – 3061.
dc.identifier.citedreferenceA. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout, M. Eddaoudi, Science 2016, 353, 137 – 140.
dc.identifier.citedreferenceG. Férey, Chem. Soc. Rev. 2008, 37, 191 – 214.
dc.identifier.citedreferenceA. G. Slater, A. I. Cooper, Science 2015, 348, 988.
dc.identifier.citedreferenceD. I. Kolokolov, H. Jobic, A. G. Stepanov, V. Guillerm, T. Devic, C. Serre, G. Férey, Angew. Chem. Int. Ed. 2010, 49, 4791 – 4794; Angew. Chem. 2010, 122, 4901 – 4904.
dc.identifier.citedreferenceD. I. Kolokolov, A. G. Stepanov, V. Guillerm, C. Serre, B. Frick, H. Jobic, J. Phys. Chem. C 2012, 116, 12131 – 12136.
dc.identifier.citedreferenceD. I. Kolokolov, A. G. Stepanov, H. Jobic, J. Phys. Chem. C 2014, 118, 15978 – 15984.
dc.identifier.citedreferenceA. Comotti, S. Bracco, P. Valsesia, M. Beretta, P. Sozzani, Angew. Chem. Int. Ed. 2010, 49, 1760 – 1764; Angew. Chem. 2010, 122, 1804 – 1808.
dc.identifier.citedreferenceA. Sutrisno, Y. Huang, Solid State Nucl. Magn. Reson. 2013, 49–50, 1 – 11.
dc.identifier.citedreferenceA. E. Khudozhitkov, D. I. Kolokolov, A. G. Stepanov, V. A. Bolotov, D. N. Dybtsev, J. Phys. Chem. C 2015, 119, 28038 – 28045.
dc.identifier.citedreferenceR. K. Hester, J. L. Ackerman, B. L. Neff, J. S. Waugh, Phys. Rev. Lett. 1976, 36, 1081 – 1083.
dc.identifier.citedreferenceM. Hong, J. D. Gross, R. G. Griffin, J. Phys. Chem. B 1997, 101, 5869 – 5874.
dc.identifier.citedreferenceE. R. de Azevedo, K. Saalwachter, O. Pascui, A. A. de Souza, T. J. Bonagamba, D. Reichert, J. Chem. Phys. 2008, 128, 104505.
dc.identifier.citedreferenceJ. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850 – 13851.
dc.identifier.citedreferenceJ. Hirschinger, Concepts Magn. Reson. Part A 2006, 28A, 307 – 320.
dc.identifier.citedreferenceM. J. Duer in Solid State NMR Spectroscopy: Principles and Applications, Blackwell Science Ltd, Oxford, 2002, pp.  111 – 178.
dc.identifier.citedreferenceK. Schmidt-Rohr, H. W. Spiess, Multidimensional Solid-State NMR and Polymers, Academic Press, London, 2012.
dc.identifier.citedreferenceS. L. Gould, D. Tranchemontagne, O. M. Yaghi, M. A. Garcia-Garibay, J. Am. Chem. Soc. 2008, 130, 3246 – 3247.
dc.identifier.citedreferenceL. H. Wee, L. Alaerts, J. A. Martens, D. De Vos, Metal–Organic Frameworks, Wiley-VCH, Weinheim, 2011, pp.  191 – 212.
dc.identifier.citedreferenceE. Barea, F. Turra, J. A. Rodriguez Navarro, Metal–Organic Frameworks, Wiley-VCH, Weinheim, 2011, pp.  69 – 97.
dc.identifier.citedreferenceS. L. Gould, D. Tranchemontagne, O. M. Yaghi, M. A. Garcia-Garibay, J. Am. Chem. Soc. 2008, 130, 3246 – 3247.
dc.identifier.citedreferenceO. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705 – 714.
dc.identifier.citedreferenceMotions occurring at much faster rates than the coupling constants will result in a “pre-averaged” tensor producing a reduced coupling constant. The motions responsible for the pre-averaging are on distinctly faster time-scales than the motions detected in the experiment.
dc.identifier.citedreferenceThis value is larger than UiO-67, despite similar curve depths in the plot because UiO-66-Br measurements were completed at higher spinning frequencies (see the Supporting Information).
dc.identifier.citedreferenceZ. Chang, D. H. Yang, J. Xu, T. L. Hu, X. H. Bu, Adv. Mater. 2015, 27, 5432 – 5441.
dc.identifier.citedreferenceM. Inukai, T. Fukushima, Y. Hijikata, N. Ogiwara, S. Horike, S. Kitagawa, J. Am. Chem. Soc. 2015, 137, 12183 – 12186.
dc.identifier.citedreferenceS. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695 – 704.
dc.identifier.citedreferenceS. Horike, R. Matsuda, D. Tanaka, S. Matsubara, M. Mizuno, K. Endo, S. Kitagawa, Angew. Chem. Int. Ed. 2006, 45, 7226 – 7230; Angew. Chem. 2006, 118, 7384 – 7388.
dc.identifier.citedreferenceY. Huang, W. Qin, Z. Li, Y. Li, Dalton Trans. 2012, 41, 9283.
dc.identifier.citedreferenceA. Schneemann, S. Henke, I. Schwedler, R. A. Fischer, ChemPhysChem 2014, 15, 823 – 839.
dc.identifier.citedreferenceP. Horcajada, F. Salles, S. Wuttke, T. Devic, D. Heurtaux, G. Maurin, A. Vimont, M. Daturi, O. David, E. Magnier, et al., J. Am. Chem. Soc. 2011, 133, 17839 – 17847.
dc.identifier.citedreferenceK. Hendrickx, D. E. P. Vanpoucke, K. Leus, K. Lejaeghere, A. Van Yperen-De Deyne, V. Van Speybroeck, P. Van Der Voort, K. Hemelsoet, Inorg. Chem. 2015, 54, 10701 – 10710.
dc.identifier.citedreferenceA. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062 – 6096.
dc.identifier.citedreferenceG. Férey, C. Serre, Chem. Soc. Rev. 2009, 38, 1380.
dc.identifier.citedreferenceJ. A. Rodríguez-Velamazán, M. A. González, J. A. Real, M. Castro, M. C. Muñoz, A. B. Gaspar, R. Ohtani, M. Ohba, K. Yoneda, Y. Hijikata, et al., J. Am. Chem. Soc. 2012, 134, 5083 – 5089.
dc.identifier.citedreferenceF. X. Coudert, Chem. Mater. 2015, 27, 1905 – 1916.
dc.identifier.citedreferenceW. Setaka, K. Yamaguchi, Proc. Natl. Acad. Sci. USA 2012, 109, 9271 – 9275.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.