Show simple item record

Construction of a Holliday Junction in Small Circular DNA Molecules for Stable Motifs and Twoâ Dimensional Lattices

dc.contributor.authorGuo, Xin
dc.contributor.authorWang, Xue‐mei
dc.contributor.authorWei, Shuai
dc.contributor.authorXiao, Shou‐jun
dc.date.accessioned2018-07-13T15:47:14Z
dc.date.available2019-09-04T20:15:39Zen
dc.date.issued2018-07-04
dc.identifier.citationGuo, Xin; Wang, Xue‐mei ; Wei, Shuai; Xiao, Shou‐jun (2018). "Construction of a Holliday Junction in Small Circular DNA Molecules for Stable Motifs and Twoâ Dimensional Lattices." ChemBioChem 19(13): 1379-1385.
dc.identifier.issn1439-4227
dc.identifier.issn1439-7633
dc.identifier.urihttps://hdl.handle.net/2027.42/144626
dc.description.abstractDesign rules for DNA nanotechnology have been mostly learnt from using linear singleâ stranded (ss) DNA as the source material. For example, the core structure of a typical DAO (double crossover, antiparallel, odd halfâ turns) tile for assembling 2D lattices is constructed from only two linear ssâ oligonucleotide scaffold strands, similar to two ropes making a square knot. Herein, a new type of coupled DAO (cDAO) tile and 2D lattices of small circular ssâ oligonucleotides as scaffold strands and linear ssâ oligonucleotides as staple strands are reported. A cDAO tile of cDAOâ c64nt (c64nt: circular 64 nucleotides), shaped as a solid parallelogram, is constructed with a Holliday junction (HJ) at the center and two HJs at both poles of a c64nt; similarly, cDAOâ c84nt, shaped as a crossed quadrilateral composed of two congruent triangles, is formed with a HJ at the center and four threeâ way junctions at the corners of a c84nt. Perfect 2D lattices were assembled from cDAO tiles: infinite nanostructures of nanoribbons, nanotubes, and nanorings, and finite nanostructures. The structural relationship between the visible lattices imaged by AFM and the corresponding invisible secondary and tertiary molecular structures of HJs, inclination angle of hydrogen bonds against the doubleâ helix axis, and the chirality of the tile can be interpreted very well. This work could shed new light on DNA nanotechnology with unique circular tiles.Bending the rules: The design of DNA motifs and lattices has mostly been investigated by using linear singleâ stranded DNA molecules as source materials. New coupled DAO (double crossover, antiparallel, odd halfâ turns) motifs and lattices have been constructed from small circular DNA molecules as scaffolds.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherstructure elucidation
dc.subject.otherDNA structures
dc.subject.othernanotechnology
dc.subject.othernoncovalent interactions
dc.subject.otherself-assembly
dc.titleConstruction of a Holliday Junction in Small Circular DNA Molecules for Stable Motifs and Twoâ Dimensional Lattices
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144626/1/cbic201800122.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144626/2/cbic201800122_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144626/3/cbic201800122-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/cbic.201800122
dc.identifier.sourceChemBioChem
dc.identifier.citedreferenceM. Wang, N. Afshan, B. Kou, S. J. Xiao, ChemNanoMat 2017, 3, 740 â 744.
dc.identifier.citedreferenceD. Ackermann, S. S. Jester, M. Famulok, Angew. Chem. Int. Ed. 2012, 51, 6771 â 6775; Angew. Chem. 2012, 124, 6875 â 6879;
dc.identifier.citedreferenceF. Lohmann, D. Ackermann, M. Famulok, J. Am. Chem. Soc. 2012, 134, 11884 â 11887;
dc.identifier.citedreferenceH. Zheng, M. Xiao, Q. Yan, Y. Ma, S. J. Xiao, J. Am. Chem. Soc. 2014, 136, 10194 â 10197;
dc.identifier.citedreferenceM. Wang, H. Huang, Z. Zhang, S.-J. Xiao, Nanoscale 2016, 8, 18870 â 18875;
dc.identifier.citedreferenceA. Noshin, M. Ali, M. Wang, M. M. F. A. Baig, S.-J. Xiao, Nanoscale 2017, 9, 17181 â 17185.
dc.identifier.citedreferenceW. Wang, T. Lin, S. Zhang, T. Bai, Y. Mi, B. Wei, Nucleic Acids Res. 2016, 44, 7989 â 7996.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. I. Nakano, D. Miyoshi, N. Sugimoto, Chem. Rev. 2014, 114, 2733 â 2758;
dc.identifier.citedreferenceA. Bhattacherjee, Y. Levy, Nucleic Acids Res. 2014, 42, 12415 â 12424;
dc.identifier.citedreference 
dc.identifier.citedreferenceP. G. deâ Gennes, J. Chem. Phys. 1971, 55, 572 â 579;
dc.identifier.citedreferenceG. W. Slater, J. Noolandi, Phys. Rev. Lett. 1985, 55, 1579 â 1582;
dc.identifier.citedreferenceG. W. Slater, J. Noolandi, Biopolymers 1989, 28, 1781 â 1791;
dc.identifier.citedreferenceS. D. Levene, B. H. Zimm, Science 1989, 245, 396 â 399;
dc.identifier.citedreferenceD. M. J. Lilley, Q. Rev. Biophys. 2008, 41, 1 â 39.
dc.identifier.citedreferenceP. W. K. Rothemund, A. Ekani-Nkodo, N. Papadakis, A. Kumar, D. K. Fygenson, E. Winfree, J. Am. Chem. Soc. 2004, 126, 16344 â 16352.
dc.identifier.citedreferenceO. Kennard, W. N. Hunter, Angew. Chem. Int. Ed. Engl. 1991, 30, 1254 â 1277; Angew. Chem. 1991, 103, 1280 â 1304.
dc.identifier.citedreferenceC. Geary, P. W. K. Rothemund, E. S. Andersen, Science 2014, 345, 799 â 804.
dc.identifier.citedreferenceI. Usov, R. Mezzenga, Macromolecules 2015, 48, 1269 â 1280.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Schiffels, T. Liedl, D. K. Fygenson, ACS Nano 2013, 7, 6700 â 6710;
dc.identifier.citedreferenceA. M. Maier, W. Bae, D. Schiffels, J. F. Emmerig, M. Schiff, T. Liedl, ACS Nano 2017, 11, 1301 â 1306.
dc.identifier.citedreference 
dc.identifier.citedreferenceF. Tsu-Ju, N. C. Seeman, Biochemistry 1993, 32, 3211 â 3220;
dc.identifier.citedreferenceE. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, Nature 1998, 394, 539 â 544;
dc.identifier.citedreferenceF. Liu, R. Sha, N. C. Seeman, J. Am. Chem. Soc. 1999, 121, 917 â 922.
dc.identifier.citedreference 
dc.identifier.citedreferenceH. Yan, S. H. Park, G. Finkelstein, J. H. Reif, T. H. LaBean, Science 2003, 301, 1882 â 1884;
dc.identifier.citedreferenceD. Liu, M. Wang, Z. Deng, R. Walulu, C. Mao, J. Am. Chem. Soc. 2004, 126, 2324 â 2325;
dc.identifier.citedreferenceY. He, Y. Tian, Y. Chen, Z. Deng, A. E. Ribbe, C. Mao, Angew. Chem. Int. Ed. 2005, 44, 6694 â 6696; Angew. Chem. 2005, 117, 6852 â 6854;
dc.identifier.citedreferenceC. Tian, X. Li, Z. Liu, W. Jiang, G. Wang, C. Mao, Angew. Chem. Int. Ed. 2014, 53, 8041 â 8044; Angew. Chem. 2014, 126, 8179 â 8182;
dc.identifier.citedreferenceP. Wang, S. Wu, C. Tian, G. Yu, W. Jiang, G. Wang, C. Mao, J. Am. Chem. Soc. 2016, 138, 13579 â 13585.
dc.identifier.citedreference 
dc.identifier.citedreferenceY. Ke, L. L. Ong, W. M. Shih, P. Yin, Science 2012, 338, 1177 â 1183;
dc.identifier.citedreferenceB. Wei, M. Dai, P. Yin, Nature 2012, 485, 623 â 626;
dc.identifier.citedreferenceY. Ke, L. L. Ong, W. Sun, J. Song, M. Dong, W. M. Shih, P. Yin, Nat. Chem. 2014, 6, 994 â 1002;
dc.identifier.citedreferenceB. Wei, L. L. Ong, J. Chen, A. S. Jaffe, P. Yin, Angew. Chem. Int. Ed. 2014, 53, 7475 â 7479; Angew. Chem. 2014, 126, 7605 â 7609.
dc.identifier.citedreference 
dc.identifier.citedreferenceP. W. K. Rothemund, Nature 2006, 440, 297 â 302;
dc.identifier.citedreferenceS. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, W. M. Shih, Nature 2009, 459, 414 â 418;
dc.identifier.citedreferenceH. Dietz, S. M. Douglas, W. M. Shih, Science 2009, 325, 725 â 730;
dc.identifier.citedreferenceA. Aghebatâ Rafat, T. Pirzer, M. B. Scheible, A. Kostina, F. C. Simmel, Angew. Chem. Int. Ed. 2014, 53, 7665 â 7668; Angew. Chem. 2014, 126, 7797 â 7801;
dc.identifier.citedreferenceF. Hong, S. Jiang, T. Wang, Y. Liu, H. Yan, Angew. Chem. Int. Ed. 2016, 55, 12832 â 12835; Angew. Chem. 2016, 128, 13024 â 13027.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. Holliday, Genet. Res. 1964, 5, 282 â 304;
dc.identifier.citedreferenceD. R. Duckett, A. I. H. Murchie, R. M. Clegg, A. Zechel, E. vonâ Kitzing, S. Diekmann, D. M. J. Lilley, Struct. Methods, Hum. Genome Initiat. DNA Recomb. 1990, 1, 157 â 181;
dc.identifier.citedreferenceM. Ariyoshi, D. G. Vassylyev, H. Iwasaki, H. Nakamura, H. Shinagawa, K. Morikawa, Cell 1994, 78, 1063 â 1072;
dc.identifier.citedreferenceB. F. Eichman, J. M. Vargason, B. H. Mooers, P. S. Ho, Proc. Natl. Acad. Sci. USA 2000, 97, 3971 â 3976.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Ackermann, T. L. Schmidt, J. S. Hannam, C. S. Purohit, A. Heckel, M. Famulok, Nat. Nanotechnol. 2010, 5, 436 â 442;
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.