Show simple item record

Microbial metabolites, short‐chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice

dc.contributor.authorKim, Myunghoo
dc.contributor.authorFriesen, Leon
dc.contributor.authorPark, Jeongho
dc.contributor.authorKim, Hyungjin M.
dc.contributor.authorKim, Chang H.
dc.date.accessioned2018-07-13T15:47:23Z
dc.date.available2019-09-04T20:15:39Zen
dc.date.issued2018-07
dc.identifier.citationKim, Myunghoo; Friesen, Leon; Park, Jeongho; Kim, Hyungjin M.; Kim, Chang H. (2018). "Microbial metabolites, short‐chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice." European Journal of Immunology 48(7): 1235-1247.
dc.identifier.issn0014-2980
dc.identifier.issn1521-4141
dc.identifier.urihttps://hdl.handle.net/2027.42/144635
dc.description.abstractThe intestinal immune system is regulated by microbes and their metabolites. The roles of gut microbial metabolites in regulating intestinal inflammation and tumorigenesis are incompletely understood. We systematically studied the roles of short‐chain fatty acids (SCFAs) and their receptors (GPR43 or GPR41) in regulating tissue bacterial load, acute versus chronic inflammatory responses, and intestinal cancer development. SCFA receptor‐, particularly GPR43‐, deficient mice were defective in mounting appropriate acute immune responses to promote barrier immunity, and developed uncontrolled chronic inflammatory responses following epithelial damage. Further, intestinal carcinogenesis was increased in GPR43‐deficient mice. Dietary fiber and SCFA administration suppressed intestinal inflammation and cancer in both GPR43‐dependent and independent manners. The beneficial effect of GPR43 was not mediated by altered microbiota but by host tissue cells and hematopoietic cells to a lesser degree. We found that inability to suppress commensal bacterial invasion into the colonic tissue is associated with the increased chronic Th17‐driven inflammation and carcinogenesis in the intestine of GPR43‐deficient mice. In sum, our results reveal the beneficial function of the SCFA‐GPR43 axis in suppressing bacterial invasion and associated chronic inflammation and carcinogenesis in the colon.We found with animal models that dietary fiber, their microbial metabolites, and host receptors for these metabolites potentiate gut barrier immune responses during colon cancer development to decrease bacterial burden and chronic inflammatory responses, resulting in decreased cancer formation.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherShort‐chain fatty acids
dc.subject.otherColon cancer
dc.subject.otherDietary fiber
dc.subject.otherInflammation
dc.titleMicrobial metabolites, short‐chain fatty acids, restrain tissue bacterial load, chronic inflammation, and associated cancer in the colon of mice
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144635/1/eji4232-sup-0002-SuppMat.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144635/2/eji4232-sup-0001-PRC.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144635/3/eji4232.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144635/4/eji4232_am.pdf
dc.identifier.doi10.1002/eji.201747122
dc.identifier.sourceEuropean Journal of Immunology
dc.identifier.citedreferenceRubino, S. J., Geddes, K. and Girardin, S. E., Innate IL‐17 and IL‐22 responses to enteric bacterial pathogens. Trends Immunol. 2012. 33: 112 – 118.
dc.identifier.citedreferenceMaslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., Schilter, H. C. et al., Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009. 461: 1282 – 1286.
dc.identifier.citedreferenceSingh, N., Gurav, A., Sivaprakasam, S., Brady, E., Padia, R., Shi, H., Thangaraju, M. et al., Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014. 40: 128 – 139.
dc.identifier.citedreferenceJanakiram, N. B. and Rao, C. V., The role of inflammation in colon cancer. Adv. Exp. Med. Biol. 2014. 816: 25 – 52.
dc.identifier.citedreferenceOhnishi, S., Ma, N., Thanan, R., Pinlaor, S., Hammam, O., Murata, M. and Kawanishi, S., DNA damage in inflammation‐related carcinogenesis and cancer stem cells. Oxid Med Cell Longev 2013. 2013: 387014.
dc.identifier.citedreferenceBrennan, C. A. and Garrett, W. S., Gut microbiota, inflammation, and colorectal cancer. Annu. Rev. Microbiol. 2016. 70: 395 – 411.
dc.identifier.citedreferenceGreten, F. R., Eckmann, L., Greten, T. F., Park, J. M., Li, Z. W., Egan, L. J., Kagnoff, M. F. et al., IKKbeta links inflammation and tumorigenesis in a mouse model of colitis‐associated cancer. Cell 2004. 118: 285 – 296.
dc.identifier.citedreferenceLicciardi, P. V., Ververis, K. and Karagiannis, T. C., Histone deacetylase inhibition and dietary short‐chain Fatty acids. ISRN Allergy 2011. 2011: 869647.
dc.identifier.citedreferencePark, J., Kim, M., Kang, S., Jannasch, A., Cooper, B., Patterson, J. and Kim, C., Short‐chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunol. 2015. 8: 80 – 93.
dc.identifier.citedreferenceHinnebusch, B. F., Meng, S., Wu, J. T., Archer, S. Y. and Hodin, R. A., The effects of short‐chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J. Nutr. 2002. 132: 1012 – 1017.
dc.identifier.citedreferenceShao, Y., Gao, Z., Marks, P. A. and Jiang, X., Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA 2004. 101: 18030 – 18035.
dc.identifier.citedreferenceFung, K. Y., Brierley, G. V., Henderson, S., Hoffmann, P., McColl, S. R., Lockett, T., Head, R. et al., Butyrate‐induced apoptosis in HCT116 colorectal cancer cells includes induction of a cell stress response. J. Proteome Res. 2011. 10: 1860 – 1869.
dc.identifier.citedreferenceSun, Y. and O’Riordan, M. X., Regulation of bacterial pathogenesis by intestinal short‐chain Fatty acids. Adv. Appl. Microbiol. 2013. 85: 93 – 118.
dc.identifier.citedreferenceNunes, T. and de Souza, H. S., Inflammasome in intestinal inflammation and cancer. Mediators Inflamm. 2013. 2013: 654963.
dc.identifier.citedreferenceShea‐Donohue, T., Thomas, K., Cody, M. J., Aiping, Z., Detolla, L. J., Kopydlowski, K. M., Fukata, M. et al., Mice deficient in the CXCR2 ligand, CXCL1 (KC/GRO‐alpha), exhibit increased susceptibility to dextran sodium sulfate (DSS)‐induced colitis. Innate Immun. 2008. 14: 117 – 124.
dc.identifier.citedreferenceModan, B., Barell, V., Lubin, F., Modan, M., Greenberg, R. A. and Graham, S., Low‐fiber intake as an etiologic factor in cancer of the colon. J. Natl. Cancer Inst. 1975. 55: 15 – 18.
dc.identifier.citedreferenceReddy, B. S., Dietary factors and cancer of the large bowel. Semin. Oncol. 1976. 3: 351 – 359.
dc.identifier.citedreferenceVerspreet, J., Damen, B., Broekaert, W. F., Verbeke, K., Delcour, J. A. and Courtin, C. M., A critical look at prebiotics within the dietary fiber concept. Annu. Rev. Food Sci. Technol. 2016. 7: 167 – 190.
dc.identifier.citedreferenceScheppach, W. and Weiler, F., The butyrate story: old wine in new bottles? Curr. Opin. Clin. Nutr. Metab. Care 2004. 7: 563 – 567.
dc.identifier.citedreferenceWang, T., Cai, G., Qiu, Y., Fei, N., Zhang, M., Pang, X., Jia, W. et al., Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012. 6: 320 – 329.
dc.identifier.citedreferenceKostic, A. D., Chun, E., Robertson, L., Glickman, J. N., Gallini, C. A., Michaud, M., Clancy, T. E. et al., Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor‐immune microenvironment. Cell Host Microbe 2013. 14: 207 – 215.
dc.identifier.citedreferenceSobhani, I., Tap, J., Roudot‐Thoraval, F., Roperch, J. P., Letulle, S., Langella, P., Corthier, G. et al., Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 2011. 6: e16393.
dc.identifier.citedreferenceTrompette, A., Gollwitzer, E. S., Yadava, K., Sichelstiel, A. K., Sprenger, N., Ngom‐Bru, C., Blanchard, C. et al., Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014. 20: 159 – 166.
dc.identifier.citedreferenceKang, S. G., Wang, C., Matsumoto, S. and Kim, C. H., High and low vitamin A therapies induce distinct FoxP3+ T‐cell subsets and effectively control intestinal inflammation. Gastroenterology 2009. 137: 1391 – 1402 e1391–1396.
dc.identifier.citedreferenceBarman, M., Unold, D., Shifley, K., Amir, E., Hung, K., Bos, N. and Salzman, N., Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect. Immun. 2008. 76: 907 – 915.
dc.identifier.citedreferenceZeng, M. Y., Inohara, N. and Nunez, G., Mechanisms of inflammation‐driven bacterial dysbiosis in the gut. Mucosal Immunol 2016. 20: 18 – 26.
dc.identifier.citedreferenceWroblewski, L. E., Peek, R. M., Jr. and Coburn, L. A., The role of the microbiome in gastrointestinal cancer. Gastroenterol. Clin. North Am. 2016. 45: 543 – 556.
dc.identifier.citedreferenceKim, C. H., Park, J. and Kim, M., Gut microbiota‐derived short‐chain fatty acids, T cells, and inflammation. Immune network 2014. 14: 277 – 288.
dc.identifier.citedreferenceLouis, P., Hold, G. L. and Flint, H. J., The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014. 12: 661 – 672.
dc.identifier.citedreferenceTopping, D. L. and Clifton, P. M., Short‐chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001. 81: 1031 – 1064.
dc.identifier.citedreferenceSun, M., Wu, W., Liu, Z. and Cong, Y., Microbiota metabolite short chain fatty acids, GPCR, p and inflammatory bowel diseases. J. Gastroenterol. 2016. 52: 1 – 8.
dc.identifier.citedreferenceKoh, A., De Vadder, F., Kovatcheva‐Datchary, P. and Backhed, F., From dietary fiber to host physiology: short‐chain fatty acids as key bacterial metabolites. Cell 2016. 165: 1332 – 1345.
dc.identifier.citedreferenceMorrison, D. J. and Preston, T., Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut. Microbes 2016. 7: 189 – 200.
dc.identifier.citedreferenceRuppin, H., Bar‐Meir, S., Soergel, K., Wood, C. and Schmitt, M., Jr., Absorption of short‐chain fatty acids by the colon. Gastroenterology 1980. 78: 1500 – 1507.
dc.identifier.citedreferenceFrost, G., Sleeth, M. L., Sahuri‐Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., Anastasovska, J. et al., The short‐chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 2014. 5: 3611.
dc.identifier.citedreferencePerry, R. J., Peng, L., Barry, N. A., Cline, G. W., Zhang, D., Cardone, R. L., Petersen, K. F. et al., Acetate mediates a microbiome‐brain‐beta‐cell axis to promote metabolic syndrome. Nature 2016. 534: 213 – 217.
dc.identifier.citedreferenceDe Vadder, F., Kovatcheva‐Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., Backhed, F. et al., Microbiota‐generated metabolites promote metabolic benefits via gut‐brain neural circuits. Cell 2014. 156: 84 – 96.
dc.identifier.citedreferenceKim, M. H., Kang, S. G., Park, J. H., Yanagisawa, M. and Kim, C. H., Short‐chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013. 145: 396 – 406 e391‐310.
dc.identifier.citedreferenceKelly, C. J., Zheng, L., Campbell, E. L., Saeedi, B., Scholz, C. C., Bayless, A. J., Wilson, K. E. et al., Crosstalk between microbiota‐derived short‐chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 2015. 17: 662 – 671.
dc.identifier.citedreferenceBrown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., Muir, A. I. et al., The Orphan G protein‐coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003. 278: 11312 – 11319.
dc.identifier.citedreferenceLe Poul, E., Loison, C., Struyf, S., Springael, J. Y., Lannoy, V., Decobecq, M. E., Brezillon, S. et al., Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 2003. 278: 25481 – 25489.
dc.identifier.citedreferenceWise, A., Foord, S. M., Fraser, N. J., Barnes, A. A., Elshourbagy, N., Eilert, M., Ignar, D. M. et al., Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 2003. 278: 9869 – 9874.
dc.identifier.citedreferencePluznick, J. L., Protzko, R. J., Gevorgyan, H., Peterlin, Z., Sipos, A., Han, J., Brunet, I. et al., Olfactory receptor responding to gut microbiota‐derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl Acad. Sci. USA 2013. 110: 4410 – 4415.
dc.identifier.citedreferenceYonezawa, T., Kobayashi, Y. and Obara, Y., Short‐chain fatty acids induce acute phosphorylation of the p38 mitogen‐activated protein kinase/heat shock protein 27 pathway via GPR43 in the MCF‐7 human breast cancer cell line. Cell. Signal. 2007. 19: 185 – 193.
dc.identifier.citedreferenceSeljeset, S. and Siehler, S., Receptor‐specific regulation of ERK1/2 activation by members of the “free fatty acid receptor” family. J. Recept. Signal Transduct. Res. 2012. 32: 196 – 201.
dc.identifier.citedreferenceHartnett, L. and Egan, L. J., Inflammation, DNA methylation and colitis‐associated cancer. Carcinogenesis 2012. 33: 723 – 731.
dc.identifier.citedreferenceWerts, C., Rubino, S., Ling, A., Girardin, S. E. and Philpott, D. J., Nod‐like receptors in intestinal homeostasis, inflammation, and cancer. J. Leukoc. Biol. 2011. 90: 471 – 482.
dc.identifier.citedreferenceUllman, T. A. and Itzkowitz, S. H., Intestinal inflammation and cancer. Gastroenterology 2011. 140: 1807 – 1816.
dc.identifier.citedreferenceLandgren, A. M., Landgren, O., Gridley, G., Dores, G. M., Linet, M. S. and Morton, L. M., Autoimmune disease and subsequent risk of developing alimentary tract cancers among 4.5 million US male veterans. Cancer 2011. 117: 1163 – 1171.
dc.identifier.citedreferencePark, Y., Hunter, D. J., Spiegelman, D., Bergkvist, L., Berrino, F., van den Brandt, P. A., Buring, J. E. et al., Dietary fiber intake and risk of colorectal cancer: a pooled analysis of prospective cohort studies. JAMA 2005. 294: 2849 – 2857.
dc.identifier.citedreferenceTang, Y., Chen, Y., Jiang, H., Robbins, G. T. and Nie, D., G‐protein‐coupled receptor for short‐chain fatty acids suppresses colon cancer. Int. J. Cancer 2011. 128: 847 – 856.
dc.identifier.citedreferenceSivaprakasam, S., Gurav, A., Paschall, A. V., Coe, G. L., Chaudhary, K., Cai, Y., Kolhe, R. et al., An essential role of Ffar2 (Gpr43) in dietary fibre‐mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis 2016. 5: e238.
dc.identifier.citedreferenceMacia, L., Tan, J., Vieira, A. T., Leach, K., Stanley, D., Luong, S., Maruya, M. et al., Metabolite‐sensing receptors GPR43 and GPR109A facilitate dietary fibre‐induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 2015. 6: 6734.
dc.identifier.citedreferenceSina, C., Gavrilova, O., Forster, M., Till, A., Derer, S., Hildebrand, F., Raabe, B. et al., G protein‐coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 2009. 183: 7514 – 7522.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.