Leucine supplementation attenuates macrophage foamâ cell formation: Studies in humans, mice, and cultured macrophages
dc.contributor.author | Grajeda‐iglesias, Claudia | |
dc.contributor.author | Rom, Oren | |
dc.contributor.author | Hamoud, Shadi | |
dc.contributor.author | Volkova, Nina | |
dc.contributor.author | Hayek, Tony | |
dc.contributor.author | Abu‐saleh, Niroz | |
dc.contributor.author | Aviram, Michael | |
dc.date.accessioned | 2018-07-13T15:47:30Z | |
dc.date.available | 2019-07-01T14:52:17Z | en |
dc.date.issued | 2018-05 | |
dc.identifier.citation | Grajeda‐iglesias, Claudia ; Rom, Oren; Hamoud, Shadi; Volkova, Nina; Hayek, Tony; Abu‐saleh, Niroz ; Aviram, Michael (2018). "Leucine supplementation attenuates macrophage foamâ cell formation: Studies in humans, mice, and cultured macrophages." BioFactors 44(3): 245-262. | |
dc.identifier.issn | 0951-6433 | |
dc.identifier.issn | 1872-8081 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/144642 | |
dc.description.abstract | Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foamâ cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an inâ depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine doseâ dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very lowâ density lipoproteins and triglyceride biosynthesis rate, with a concurrent downâ regulation of diacylglycerol acyltransferaseâ 1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with αâ ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foamâ cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 44(3):245â 262, 2018 | |
dc.publisher | Springer | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | leucine | |
dc.subject.other | 뱉 ketoisocaproate | |
dc.subject.other | macrophages | |
dc.subject.other | lipid metabolism | |
dc.subject.other | foamâ cell formation | |
dc.title | Leucine supplementation attenuates macrophage foamâ cell formation: Studies in humans, mice, and cultured macrophages | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/144642/1/biof1415.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/144642/2/biof1415_am.pdf | |
dc.identifier.doi | 10.1002/biof.1415 | |
dc.identifier.source | BioFactors | |
dc.identifier.citedreference | Aviram, M. ( 1983 ) Plasma lipoprotein separation by discontinuous density gradient ultracentrifugation in hyperlipoproteinemic patients. Biochem. Med. 30, 111 â 118. | |
dc.identifier.citedreference | Rom, O., Jeries, H., Hayek, T., and Aviram, M. ( 2017 ) Supplementation with linoleic acidâ rich soybean oil stimulates macrophage foam cell formation via increased oxidative stress and diacylglycerol acyltransferase1â mediated triglyceride biosynthesis. Biofactors 43, 100 â 116. | |
dc.identifier.citedreference | Gu, X., Kozarsky, K., and Krieger, M. ( 2000 ) Scavenger Receptor Class B, Type Iâ mediated [3H]Cholesterol Efflux to High and Low Density Lipoproteins Is Dependent on Lipoprotein Binding to the Receptor. J. Biol. Chem. 275, 29993 â 30001. | |
dc.identifier.citedreference | Rosenblat, M., Rom, O., Volkova, N., and Aviram, M. ( 2016 ) Nitroâ oleic acid reduces J774A.1 macrophage oxidative status and triglyceride mass: involvement of paraoxonase2 and triglyceride metabolizing enzymes. Lipids 51, 941 â 953. | |
dc.identifier.citedreference | Abuâ Saleh, N., Aviram, M., and Hayek, T. ( 2016 ) Aqueous or lipid components of atherosclerotic lesion increase macrophage oxidation and lipid accumulation. Life Sci. 154, 1 â 14. | |
dc.identifier.citedreference | Tanada, Y., Shioi, T., Kato, T., Kawamoto, A., Okuda, J., et al. ( 2015 ) Branchedâ chain amino acids ameliorate heart failure with cardiac cachexia in rats. Life Sci. 137, 20 â 27. | |
dc.identifier.citedreference | Rosenblat, M., Volkova, N., Coleman, R., and Aviram, M. ( 2007 ) Antiâ oxidant and antiâ atherogenic properties of liposomal glutathione: studies in vitro, and in the atherosclerotic apolipoprotein Eâ deficient mice. Atherosclerosis 195, e61 â e68. | |
dc.identifier.citedreference | Rom, O., Korachâ Rechtman, H., Hayek, T., Daninâ Poleg, Y., Bar, H., et al. ( 2017 ) Acrolein increases macrophage atherogenicity in association with gut microbiota remodeling in atherosclerotic mice: protective role for the polyphenolâ rich pomegranate juice. Arch. Toxicol. 91, 1709 â 1725. | |
dc.identifier.citedreference | Smolina, N., Bruton, J., Kostareva, A., and Sejersen, T. ( 2017 ) Cell Viability Assays. In Methods and Protocols. ( Gilbert, D.F. and Friedrich, O., eds.). pp. 79 â 87, Springer, New York. | |
dc.identifier.citedreference | Agilent Seahorse XF Cell Mito Stress Test Kit User Guide. Available at: https://www.agilent.com/cs/library/usermanuals/public/XF_Cell_Mito_Stress_Test_Kit_User_Guide.pdf | |
dc.identifier.citedreference | Feingold, K. R., Shigenaga, J. K., Kazemi, M. R., McDonald, C. M., Patzek, S. M., et al. ( 2012 ) Mechanisms of triglyceride accumulation in activated macrophages. J. Leukoc. Biol. 92, 829 â 839. | |
dc.identifier.citedreference | Meilin, E., Aviram, M., and Hayek, T. ( 2011 ) Insulin increases macrophage triglyceride accumulation under diabetic conditions through the down regulation of hormone sensitive lipase and adipose triglyceride lipase. Biofactors 37, 95 â 103. | |
dc.identifier.citedreference | Yen, C. L. E., Stone, S. J., Koliwad, S., Harris, C., and Farese, R. V. ( 2008 ) Thematic Review Series: Glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 49, 2283 â 2301. | |
dc.identifier.citedreference | Van Koevering, M., and Nissen, S. ( 1992 ) Oxidation of leucine and alphaâ ketoisocaproate to betaâ hydroxyâ betaâ methylbutyrate in vivo. Am. J. Physiol. 262, E27 â E31. | |
dc.identifier.citedreference | MarÃnâ GarcÃa, J. ( 2013 ) Mitochondria and Their Role in Cardiovascular Disease. pp. 295 â 303, Springer, Boston, MA, US. | |
dc.identifier.citedreference | Layman, D. K., and Walker, D. A. ( 2006 ) Potential importance of leucine in treatment of obesity and the metabolic syndrome. J. Nutr. 136, 319S â 323S. | |
dc.identifier.citedreference | Igor, A. S., Veronica, A. M., Elena, V. A., Xenia, N. P., Stefan, M., et al. ( 2014 ) Blood serum atherogenicity and coronary artery calcification. Curr. Pharm. Des. 20, 5884 â 5888. | |
dc.identifier.citedreference | Phillips, M. C. ( 2014 ) Molecular mechanisms of cellular cholesterol efflux. J. Biol. Chem. 289, 24020 â 24029. | |
dc.identifier.citedreference | Yokota, S.â I., Ando, M., Aoyama, S., Nakamura, K., and Shibata, S. ( 2016 ) Leucine restores murine hepatic triglyceride accumulation induced by a lowâ protein diet by suppressing autophagy and excessive endoplasmic reticulum stress. Amino Acids, 48, 1013 â 1021. | |
dc.identifier.citedreference | Carallo, C., Mancuso, G., Mauro, G., Laghi, F., Madafferi, B., et al. ( 2009 ) Hepatic steatosis, carotid atherosclerosis and metabolic syndrome: the STEATO Study. J. Gastroenterol. 44, 1156 â 1161. | |
dc.identifier.citedreference | Goldberg, I. J., Eckel, R. H., and McPherson, R. ( 2011 ) Triglycerides and heart disease, still a hypothesis? Arterioscler. Thromb. Vasc. Biol. 31, 1716 â 1725. | |
dc.identifier.citedreference | Moore, K. J., and Freeman, M. W. ( 2006 ) Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler. Thromb. Vasc. Biol. 26, 1702 â 1711. | |
dc.identifier.citedreference | Calvo, D., Gómezâ Coronado, D., Suárez, Y., Lasunción, M. A., and Vega, M. A. ( 1998 ) Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. J. Lipid Res. 39, 777 â 788. | |
dc.identifier.citedreference | Lembert, N., and Idahl, L. A. ( 1998 ) Alphaâ ketoisocaproate is not a true substrate for ATP production by pancreatic betaâ cell mitochondria. Diabetes 47, 339 â 344. | |
dc.identifier.citedreference | Karunakaran, D., Thrush, A. B., Nguyen, M. A., Richards, L., Geoffrion, M., et al. ( 2015 ) Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by antiâ miR33 in Atherosclerosis. Circ. Res. 117, 266 â 278. | |
dc.identifier.citedreference | Yu, E., Calvert, P. A., Mercer, J. R., Harrison, J., Baker, L., et al. ( 2013 ) Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higherâ risk plaques in humans. Circulation 128, 702 â 712. | |
dc.identifier.citedreference | Yu, E. P. K., Reinhold, J., Yu, H., Starks, L., Uryga, A. K., et al. ( 2017 ) Mitochondrial respiration is reduced in atherosclerosis, promoting necrotic core formation and reducing relative fibrous cap thickness. Arterioscler. Thromb. Vasc. Biol. 37, 2322 â 2332. | |
dc.identifier.citedreference | Jennings, A., MacGregor, A., Pallister, T., Spector, T., and Cassidy, A. ( 2016 ) Associations between branched chain amino acid intake and biomarkers of adiposity and cardiometabolic health independent of genetic factors: a twin study. Int. J. Cardiol. 223, 992 â 998. | |
dc.identifier.citedreference | Qin, L. Q., Xun, P., Bujnowski, D., Daviglus, M. L., Van Horn, L., et al. ( 2011 ) Higher branchedâ chain amino acid intake is associated with a lower prevalence of being overweight or obese in middleâ aged East Asian and Western adults. J. Nutr. 141, 249 â 254. | |
dc.identifier.citedreference | Nagata, C., Nakamura, K., Wada, K., Tsuji, M., Tamai, Y., et al. ( 2013 ) Branchedâ chain amino acid intake and the risk of diabetes in a Japanese community: the Takayama study. Am. J. Epidemiol. 178, 1226 â 1232. | |
dc.identifier.citedreference | Libby, P. ( 2002 ) Inflammation in atherosclerosis. Nature 420, 868 â 874. | |
dc.identifier.citedreference | Madamanchi, N. R., and Runge, M. S. ( 2007 ) Mitochondrial Dysfunction in Atherosclerosis. Circ. Res. 100, 460 â 473. | |
dc.identifier.citedreference | Xu, L., Dai Perrard, X., Perrard, J. L., Yang, D., Xiao, X., et al. ( 2015 ) Foamy monocytes form early and contribute to nascent atherosclerosis in mice with hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 35, 1787 â 1797. | |
dc.identifier.citedreference | Aviram, M., and Rosenblat, M. ( 2004 ) Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic. Biol. Med. 37, 1304 â 1316. | |
dc.identifier.citedreference | Rom, O., and Aviram, M. ( 2017 ) It is not just lipids: proatherogenic vs. antiatherogenic roles for amino acids in macrophage foam cell formation. Curr. Opin. Lipidol. 28, 85 â 87. | |
dc.identifier.citedreference | Selhub, J., and Troen, A. M. ( 2016 ) Sulfur amino acids and atherosclerosis: a role for excess dietary methionine. Ann. N Y Acad. Sci. 1363, 18 â 25. | |
dc.identifier.citedreference | Bellamy, M. F., McDowell, I. F., Ramsey, M. W., Brownlee, M., Bones, C., et al. ( 1998 ) Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults. Circulation 98, 1848 â 1852. | |
dc.identifier.citedreference | Eleftheriadou, I., Grigoropoulou, P., Moyssakis, I., Kokkinos, A., Perrea, D., et al. ( 2013 ) The effect of hyperhomocysteinemia on aortic distensibility in healthy individuals. Nutrition 29, 876 â 880. | |
dc.identifier.citedreference | Yang, A. N., Zhang, H. P., Sun, Y., Yang, X. L., Wang, N., et al. ( 2015 ) Highâ methionine diets accelerate atherosclerosis by HHcyâ mediated FABP4 gene demethylation pathway via DNMT1 in ApoE(â /â ) mice. FEBS Lett. 589, 3998 â 4009. | |
dc.identifier.citedreference | Shah, S. H., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Crosslin, D. R., et al. ( 2010 ) Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ. Cardiovasc. Genet. 3, 207 â 214. | |
dc.identifier.citedreference | Wurtz, P., Raiko, J. R., Magnussen, C. G., Soininen, P., Kangas, A. J., et al. ( 2012 ) Highâ throughput quantification of circulating metabolites improves prediction of subclinical atherosclerosis. Eur. Heart J. 33, 2307 â 2316. | |
dc.identifier.citedreference | Harper, A. E., Miller, R. H., and Block, K. P. ( 1984 ) Branchedâ chain amino acid metabolism. Annu. Rev. Nutr. 4, 409 â 454. | |
dc.identifier.citedreference | Yamakado, M., Tanaka, T., Nagao, K., Ishizaka, Y., Mitushima, T., et al. ( 2012 ) Plasma amino acid profile is associated with visceral fat accumulation in obese Japanese subjects. Clin. Obes. 2, 29 â 40. | |
dc.identifier.citedreference | Yamakado, M., Nagao, K., Imaizumi, A., Tani, M., Toda, A., et al. ( 2015 ) Plasma free amino acid profiles predict fourâ year risk of developing diabetes, metabolic syndrome, dyslipidemia, and hypertension in Japanese population. Sci. Rep. 5, 11918. | |
dc.identifier.citedreference | Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., et al. ( 2009 ) A branchedâ chain amino acidâ related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311 â 326. | |
dc.identifier.citedreference | Yang, R., Dong, J., Zhao, H., Li, H., Guo, H., et al. ( 2014 ) Association of branchedâ chain amino acids with carotid intimaâ media thickness and coronary artery disease risk factors. PLoS One 9, e99598. | |
dc.identifier.citedreference | Ruizâ Canela, M., Toledo, E., Clish, C. B., Hruby, A., Liang, L., et al. ( 2016 ) Plasma branchedâ chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clin. Chem. 62, 582 â 592. | |
dc.identifier.citedreference | Theytaz, F., Noguchi, Y., Egli, L., Campos, V., Buehler, T., et al. ( 2012 ) Effects of supplementation with essential amino acids on intrahepatic lipid concentrations during fructose overfeeding in humans. Am. J. Clin. Nutr. 96, 1008 â 1016. | |
dc.identifier.citedreference | Noguchi, Y., Nishikata, N., Shikata, N., Kimura, Y., Aleman, J. O., et al. ( 2010 ) Ketogenic essential amino acids modulate lipid synthetic pathways and prevent hepatic steatosis in mice. PLoS One 5, e12057. | |
dc.identifier.citedreference | Layman, D. K. ( 2003 ) The role of leucine in weight loss diets and glucose homeostasis. J. Nutr. 133, 261S â 267S. | |
dc.identifier.citedreference | Gannon, N. P., and Vaughan, R. A. ( 2016 ) Leucine induced anabolic catabolism: two sides of the same coin. Amino Acids 48, 321 â 336. | |
dc.identifier.citedreference | Yao, K., Duan, Y., Li, F., Tan, B., Hou, Y., et al. ( 2016 ) Leucine in obesity: therapeutic prospects. Trends Pharmacol. Sci. 37, 714 â 727. | |
dc.identifier.citedreference | Zhang, Y., Guo, K., LeBlanc, R. E., Loh, D., Schwartz, G. J., et al. ( 2007 ) Increasing dietary leucine intake reduces dietâ induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 56, 1647 â 1654. | |
dc.identifier.citedreference | Macotela, Y., Emanuelli, B., Bang, A. M., Espinoza, D. O., Boucher, J., et al. ( 2011 ) Dietary leucine â an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS One 6, e21187. | |
dc.identifier.citedreference | Jennings, A., MacGregor, A., Welch, A., Chowienczyk, P., Spector, T., et al. ( 2015 ) Amino acid intakes are inversely associated with arterial stiffness and central blood pressure in women. J. Nutr. 145, 2130 â 2138. | |
dc.identifier.citedreference | Witham, W. G., Yester, K. A., and McGaffin, K. R. ( 2013 ) A high leucine diet mitigates cardiac injury and improves survival after acute myocardial infarction. Metabolism 62, 290 â 302. | |
dc.identifier.citedreference | Zhao, Y., Dai, Xâ Y., Zhou, Z., Zhao, Gâ X., Wang, X., et al. ( 2016 ) Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice. Acta Pharmacol. Sin. 37, 196 â 203. | |
dc.identifier.citedreference | Bruckbauer, A., Banerjee, J., Cao, Q., Cui, X., Jing, J., et al. ( 2017 ) Leucineâ nicotinic acid synergy stimulates AMPK/Sirt1 signaling and regulates lipid metabolism and lifespan in Caenorhabditis elegans, and hyperlipidemia and atherosclerosis in mice. Am. J. Cardiovasc. Dis. 7, 33 â 47. | |
dc.identifier.citedreference | Dong, W., Zhou, M., Dong, M., Pan, B., Liu, Y., et al. ( 2016 ) Keto acid metabolites of branchedâ chain amino acids inhibit oxidative stressâ induced necrosis and attenuate myocardial ischemiaâ reperfusion injury. J. Mol. Cell. Cardiol. 101, 90 â 98. | |
dc.identifier.citedreference | Rom, O., Grajedaâ Iglesias, C., Najjar, M., Abuâ Saleh, N., Volkova, N., et al. ( 2017 ) Atherogenicity of amino acids in the lipidâ laden macrophage model system in vitro and in atherosclerotic mice: a key role for triglyceride metabolism. J. Nutr. Biochem. 45, 24 â 38. | |
dc.identifier.citedreference | Medicine, I. ( 2005 ) Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. The National Academies Press, Washington, DC. | |
dc.identifier.citedreference | Rom, O., Reznick, A. Z., Keidar, Z., Karkabi, K., and Aizenbud, D. ( 2015 ) Body composition in heavy smokers: comparison of segmental bioelectrical impedance analysis and dualâ energy Xâ ray absorptiometry. Adv. Exp. Med. Biol. 840, 1 â 11. | |
dc.identifier.citedreference | Hamoud, S., Hayek, T., Volkova, N., Attias, J., Moscoviz, D., et al. ( 2014 ) Pomegranate extract (POMx) decreases the atherogenicity of serum and of human monocyteâ derived macrophages (HMDM) in simvastatinâ treated hypercholesterolemic patients: a doubleâ blinded, placeboâ controlled, randomized, prospective pilot study. Atherosclerosis 232, 204 â 210. | |
dc.identifier.citedreference | Adorni, M. P., Zimetti, F., Billheimer, J. T., Wang, N., Rader, D. J., et al. ( 2007 ) The roles of different pathways in the release of cholesterol from macrophages. J. Lipid Res. 48, 2453 â 2462. | |
dc.identifier.citedreference | Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. ( 1951 ) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265 â 275. | |
dc.identifier.citedreference | Moghei, M., Tavajohiâ Fini, P., Beatty, B., and Adegoke, O. A. J. ( 2016 ) Ketoisocaproic acid, a metabolite of leucine, suppresses insulinâ stimulated glucose transport in skeletal muscle cells in a BCAT2â dependent manner. Am. J. Physiol. Cell Physiol. 311, C518 â C527. | |
dc.identifier.citedreference | Kitsy, A., Carney, S., Vivar, J. C., Knight, M. S., Pointer, M. A., et al. ( 2014 ) Effects of leucine supplementation and serum withdrawal on branchedâ chain amino acid pathway gene and protein expression in mouse adipocytes. PLoS One 9, e102615. | |
dc.identifier.citedreference | Kuriyan, R., Lokesh, D. P., Selvam, S., Jayakumar, J., Philip, M. G., et al. ( 2016 ) The relationship of endogenous plasma concentrations of betaâ Hydroxy betaâ Methyl Butyrate (HMB) to age and total appendicular lean mass in humans. Exp. Gerontol. 81, 13 â 18. | |
dc.identifier.citedreference | Mayo Clinic. Amino Acids, Quantitative, Plasma. Available at: http://www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/9265. Accessed on January 19, 2018. | |
dc.identifier.citedreference | Rom, O., Volkova, N., Nandi, S., Jelinek, R., and Aviram, M. ( 2016 ) Pomegranate juice polyphenols induce macrophage death via apoptosis as opposed to necrosis induced by free radical generation: a central role for oxidative stress. J. Cardiovasc. Pharmacol. 68, 106 â 114. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.