Show simple item record

Interpreting Precessionâ Driven δ18O Variability in the South Asian Monsoon Region

dc.contributor.authorTabor, Clay R.
dc.contributor.authorOtto‐bliesner, Bette L.
dc.contributor.authorBrady, Esther C.
dc.contributor.authorNusbaumer, Jesse
dc.contributor.authorZhu, Jiang
dc.contributor.authorErb, Michael P.
dc.contributor.authorWong, Tony E.
dc.contributor.authorLiu, Zhengyu
dc.contributor.authorNoone, David
dc.date.accessioned2018-07-13T15:48:10Z
dc.date.available2019-08-01T19:53:24Zen
dc.date.issued2018-06-16
dc.identifier.citationTabor, Clay R.; Otto‐bliesner, Bette L. ; Brady, Esther C.; Nusbaumer, Jesse; Zhu, Jiang; Erb, Michael P.; Wong, Tony E.; Liu, Zhengyu; Noone, David (2018). "Interpreting Precessionâ Driven δ18O Variability in the South Asian Monsoon Region." Journal of Geophysical Research: Atmospheres 123(11): 5927-5946.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/144678
dc.description.abstractSpeleothem records from the South Asian summer monsoon (SASM) region display variability in the ratio of 18O and 16O (δ18O) in calcium carbonate at orbital frequencies. The dominant mode of variability in many of these records reflects cycles of precession. There are several potential explanations for why SASM speleothem records show a strong precession signal, including changes in temperature, precipitation, and circulation. Here we use an Earth system model with water isotope tracers and waterâ tagging capability to deconstruct the precession signal found in SASM speleothem records. Our results show that cycles of precessionâ eccentricity produce changes in SASM intensity that correlate with local temperature, precipitation, and δ18O. However, neither the amount effect nor temperature differences are responsible for the majority of the SASM δ18O variability. Instead, changes in the relative moisture contributions from different source regions drive much of the SASM δ18O signal, with more nearby moisture sources during Northern Hemisphere summer at aphelion and more distant moisture sources during Northern Hemisphere summer at perihelion. Further, we find that evaporation amplifies the δ18O signal of soil water relative to that of precipitation, providing a better match with the SASM speleothem records. This work helps explain a significant portion of the longâ term variability found in SASM speleothem records.Plain Language SummaryCave records suggest that there has been significant longâ term climate variability in India related to changes in Earth’s orbit. However, these records are difficult to interpret because the signals can represent several different climate responses. Here we use a climate model that directly simulates the isotopic data captured in the cave records to better interpret their physical meaning. From these model simulations, we show that a large portion of the orbital signals found in the cave records are due to changes in the amount of water vapor coming from different sources. Changes in the amount of local evaporation compared to precipitation also have a large effect on the signals found in the cave records.Key PointsAn Earth system model with stable water isotope tracers is used to examine precessionâ driven variability of the South Asian monsoonSouth Asian monsoon variability in δ18O of precipitation is due to changes in the amount of moisture sourced from different regionsUsing simulated δ18O of soil water improves modelâ speleothem signal agreement
dc.publisherUS Government Printing Office
dc.publisherWiley Periodicals, Inc.
dc.subject.otherwater isotopes
dc.subject.otherspeleothems
dc.subject.otherorbital variability
dc.subject.otherpaleoclimate
dc.subject.otherSouth Asian monsoon
dc.subject.otherEarth system model
dc.titleInterpreting Precessionâ Driven δ18O Variability in the South Asian Monsoon Region
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144678/1/jgrd54673_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144678/2/jgrd54673.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144678/3/jgrd54673-sup-0001-SASM_draft_AGU_format_Supp_revised_6-4.pdf
dc.identifier.doi10.1029/2018JD028424
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferencePausata, F. S., Battisti, D. S., Nisancioglu, K. H., & Bitz, C. M. ( 2011 ). Chinese stalagmite δ 18 O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nature Geoscience, 4 ( 7 ), 474 â 480. https://doi.org/10.1038/ngeo1169
dc.identifier.citedreferenceMoerman, J. W., Cobb, K. M., Partin, J. W., Meckler, A. N., Carolin, S. A., Adkins, J. F., et al. ( 2014 ). Transformation of ENSOâ related rainwater to dripwater δ 18 O variability by vadose water mixing. Geophysical Research Letters, 41, 7907 â 7915. https://doi.org/10.1002/2014GL061696
dc.identifier.citedreferenceMolnar, P., Boos, W. R., & Battisti, D. S. ( 2010 ). Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences, 38 ( 1 ), 77 â 102. https://doi.org/10.1146/annurevâ earthâ 040809â 152456
dc.identifier.citedreferenceNusbaumer, J., Wong, T. E., Bardeen, C., & Noone, D. ( 2017 ). Evaluating hydrological processes in the Community Atmosphere Model version 5 (CAM5) using stable isotope ratios of water. Journal of Advances in Modeling Earth Systems, 9 ( 2 ), 949 â 977. https://doi.org/10.1002/2016MS000839
dc.identifier.citedreferenceOleson, K. W., Lawrence, D. M., Gordon, B., Flanner, M. G., Kluzek, E., Peter, J., et al. ( 2010 ). Technical description of version 4.0 of the Community Land Model (CLM).
dc.identifier.citedreferencePape, J. R., Banner, J. L., Mack, L. E., Musgrove, M., & Guilfoyle, A. ( 2010 ). Controls on oxygen isotope variability in precipitation and cave drip waters, central Texas, USA. Journal of Hydrology, 385 ( 1â 4 ), 203 â 215. https://doi.org/10.1016/j.jhydrol.2010.02.021
dc.identifier.citedreferencePlumb, R. A., & Hou, A. Y. ( 1992 ). The response of a zonally symmetric atmosphere to subtropical thermal forcing: Threshold behavior. Journal of the Atmospheric Sciences, 49 ( 19 ), 1790 â 1799. https://doi.org/10.1175/1520-0469(1992)049%3C1790:TROAZS%3E2.0.CO;2
dc.identifier.citedreferencePollard, D., & Reusch, D. B. ( 2002 ). A calendar conversion method for monthly mean paleoclimate model output with orbital forcing. Journal of Geophysical Research, 107 ( D22 ), 4615. https://doi.org/10.1029/2002JD002126
dc.identifier.citedreferencePoulsen, C. J., Ehlers, T. A., & Insel, N. ( 2010 ). Onset of convective rainfall during gradual late Miocene rise of the central Andes. Science, 328 ( 5977 ), 490 â 493. https://doi.org/10.1126/science.1185078
dc.identifier.citedreferencePrell, W. L., & Kutzbach, J. E. ( 1987 ). Monsoon variability over the past 150,000 years. Journal of Geophysical Research, 92, 8411 â 8425. https://doi.org/10.1029/JD092iD07p08411
dc.identifier.citedreferencePrivé, N. C., & Plumb, R. A. ( 2007a ). Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. Journal of the Atmospheric Sciences, 64 ( 5 ), 1417 â 1430. https://doi.org/10.1175/JAS3916.1
dc.identifier.citedreferencePrivé, N. C., & Plumb, R. A. ( 2007b ). Monsoon dynamics with interactive forcing. Part II: Impact of eddies and asymmetric geometries. Journal of the Atmospheric Sciences, 64 ( 5 ), 1431 â 1442. https://doi.org/10.1175/JAS3917.1
dc.identifier.citedreferenceRisi, C., Noone, D., Worden, J., Frankenberg, C., Stiller, G., Kiefer, M., et al. ( 2012 ). Processâ evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations. Journal of Geophysical Research, 117, D05303. https://doi.org/10.1029/2011JD016621
dc.identifier.citedreferenceRoe, G. H., Ding, Q., Battisti, D. S., Molnar, P., Clark, M. K., & Garzione, C. N. ( 2016 ). A modeling study of the response of Asian summertime climate to the largest geologic forcings of the past 50 Ma. Journal of Geophysical Research: Atmospheres, 121, 5453 â 5470. https://doi.org/10.1002/2015JD024370
dc.identifier.citedreferenceRuddiman, W. F. ( 2006 ). What is the timing of orbitalâ scale monsoon changes? Quaternary Science Reviews, 25 ( 7â 8 ), 657 â 658. https://doi.org/10.1016/j.quascirev.2006.02.004
dc.identifier.citedreferenceSperber, K. R., Annamalai, H., Kang, I. S., Kitoh, A., Moise, A., Turner, A., et al. ( 2013 ). The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dynamics, 41 ( 9â 10 ), 2711 â 2744. https://doi.org/10.1007/s00382â 012â 1607â 6
dc.identifier.citedreferenceTabor, C. R., Poulsen, C. J., & Pollard, D. ( 2014 ). Mending Milankovitch’s theory: Obliquity amplification by surface feedbacks. Climate of the Past, 10 ( 1 ), 41 â 50. https://doi.org/10.5194/cpâ 10â 41â 2014
dc.identifier.citedreferenceTabor, C. R., Poulsen, C. J., & Pollard, D. ( 2015 ). How obliquity cycles powered early Pleistocene global iceâ volume variability. Geophysical Research Letters, 42, 1871 â 1879. https://doi.org/10.1002/2015GL063322
dc.identifier.citedreferenceTuenter, E., Weber, S. L., Hilgen, F. J., Lourens, L. J., & Ganopolski, A. ( 2005 ). Simulation of climate phase lags in response to precession and obliquity forcing and the role of vegetation. Climate Dynamics, 24 ( 2â 3 ), 279 â 295. https://doi.org/10.1007/s00382â 004â 0490â 1
dc.identifier.citedreferenceVuille, M., Werner, M., Bradley, R. S., & Keimig, F. ( 2005 ). Stable isotopes in precipitation in the Asian monsoon region. Journal of Geophysical Research: Atmospheres, 110, D23108. https://doi.org/10.1029/2005JD006022
dc.identifier.citedreferenceWang, Y., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., et al. ( 2008 ). Millennialâ and orbitalâ scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451 ( 7182 ), 1090 â 1093. https://doi.org/10.1038/nature06692
dc.identifier.citedreferenceWebster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M. U., & Yasunari, T. ( 1998 ). Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research, 103, 14,451 â 14,510. https://doi.org/10.1029/97JC02719
dc.identifier.citedreferenceWebster, P. J., & Yang, S. ( 1992 ). Monsoon and ENSO: Selectively interactive systems. Quarterly Journal of the Royal Meteorological Society, 118 ( 507 ), 877 â 926. https://doi.org/10.1002/qj.49711850705
dc.identifier.citedreferenceWong, C. I., & Breecker, D. O. ( 2015 ). Advancements in the use of speleothems as climate archives. Quaternary Science Reviews, 127, 1 â 18. https://doi.org/10.1016/j.quascirev.2015.07.019
dc.identifier.citedreferenceWong, T. E., Nusbaumer, J., & Noone, D. C. ( 2017 ). Evaluation of modeled landâ atmosphere exchanges with a comprehensive water isotope fractionation scheme in version 4 of the Community Land Model. Journal of Advances in Modeling Earth Systems, 9 ( 2 ), 978 â 1001. https://doi.org/10.1002/2016MS000842
dc.identifier.citedreferenceWu, G., Liu, Y., He, B., Bao, Q., Duan, A., & Jin, F. F. ( 2012 ). Thermal controls on the Asian summer monsoon. Scientific Reports, 2 ( 1 ), 404. https://doi.org/10.1038/srep00404
dc.identifier.citedreferenceYanai, M., & Wu, G. X. ( 2006 ). Effects of the Tibetan Plateau. In The Asian monsoon (pp. 513 â 549 ). Berlin, Heidelberg: Springer.
dc.identifier.citedreferenceZhang, J., Liu, Z., Brady, E. C., Oppo, D. W., Clark, P. U., Jahn, A., et al. ( 2017 ). Asynchronous warming and δ 18 O evolution of deep Atlantic water masses during the last deglaciation. Proceedings of the National Academy of Sciences, 201704512.
dc.identifier.citedreferenceZhu, J., Liu, Z., Brady, E., Ottoâ Bliesner, B., Zhang, J., Noone, D., et al. ( 2017 ). Reduced ENSO variability at the LGM revealed by an isotopeâ enabled Earth system model. Geophysical Research Letters, 44, 6984 â 6992. https://doi.org/10.1002/2017GL073406
dc.identifier.citedreferenceZiegler, M., Tuenter, E., & Lourens, L. J. ( 2010 ). The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site 968). Quaternary Science Reviews, 29 ( 11â 12 ), 1481 â 1490. https://doi.org/10.1016/j.quascirev.2010.03.011
dc.identifier.citedreferenceAshfaq, M., Rastogi, D., Mei, R., Touma, D., & Leung, L. R. ( 2016 ). Sources of errors in the simulation of South Asian summer monsoon in the CMIP5 GCMs. Climate Dynamics, 49 ( 1â 2 ), 193 â 223.
dc.identifier.citedreferenceBaker, A., Bradley, C., Phipps, S. J., Fischer, M., Fairchild, I. J., Fuller, L., et al. ( 2012 ). Millennialâ length forward models and pseudoproxies of stalagmite [delta] 18 O: An example from NW Scotland. Climate of the Past, 8 ( 4 ), 1153 â 1167. https://doi.org/10.5194/cpâ 8â 1153â 2012
dc.identifier.citedreferenceBattisti, D. S., Ding, Q., & Roe, G. H. ( 2014 ). Coherent panâ Asian climatic and isotopic response to orbital forcing of tropical insolation. Journal of Geophysical Research: Atmospheres, 119, 11,997 â 12,020. https://doi.org/10.1002/2014JD021960
dc.identifier.citedreferenceBerger, A., & Loutre, M. F. ( 1991 ). Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10 ( 4 ), 297 â 317. https://doi.org/10.1016/0277â 3791(91)90033â Q
dc.identifier.citedreferenceBonan, G. B., Oleson, K. W., Vertenstein, M., Levis, S., Zeng, X., Dai, Y., et al. ( 2002 ). The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model. Journal of climate, 15 ( 22 ), 3123 â 3149.
dc.identifier.citedreferenceBoos, W. R. ( 2015 ). A review of recent progress on Tibet’s role in the South Asian monsoon. CLIVAR Exch, 19, 23 â 27.
dc.identifier.citedreferenceBoos, W. R., & Kuang, Z. ( 2010 ). Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463 ( 7278 ), 218 â 222. https://doi.org/10.1038/nature08707
dc.identifier.citedreferenceBosmans, J. H. C., Erb, M. P., Dolan, A. M., Drijfhout, S. S., Tuenter, E., Hilgen, F. J., et al. ( 2018 ). Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs. Quaternary Science Reviews, 188, 121 â 135. https://doi.org/10.1016/j.quascirev.2018.03.025
dc.identifier.citedreferenceBraconnot, P., Marzin, C., Grégoire, L., Mosquet, E., & Marti, O. ( 2008 ). Monsoon response to changes in Earth’s orbital parameters: Comparisons between simulations of the Eemian and of the Holocene. Climate of the Past, 4 ( 2 ), 459 â 493. https://doi.org/10.5194/cpdâ 4â 459â 2008
dc.identifier.citedreferenceCai, Y., An, Z., Cheng, H., Edwards, R. L., Kelly, M. J., Liu, W., et al. ( 2006 ). Highâ resolution absoluteâ dated Indian monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China. Geology, 34 ( 8 ), 621 â 624. https://doi.org/10.1130/G22567.1
dc.identifier.citedreferenceCai, Y., Cheng, H., An, Z., Edwards, R. L., Wang, X., Tan, L., & Wang, J. ( 2010 ). Large variations of oxygen isotopes in precipitation over southâ central Tibet during Marine Isotope Stage 5. Geology, 38 ( 3 ), 243 â 246. https://doi.org/10.1130/G30306.1
dc.identifier.citedreferenceCai, Y., Fung, I. Y., Edwards, R. L., An, Z., Cheng, H., Lee, J. E., et al. ( 2015 ). Variability of stalagmiteâ inferred Indian Monsoon precipitation over the past 252,000 Y. Proceedings of the National Academy of Sciences of the United States of America, 112 ( 10 ), 2954 â 2959.
dc.identifier.citedreferenceCaley, T., Roche, D. M., & Renssen, H. ( 2014 ). Orbital Asian summer monsoon dynamics revealed using an isotopeâ enabled global climate model. Nature Communications, 5 ( 1 ), 5371. https://doi.org/10.1038/ncomms6371
dc.identifier.citedreferenceChakraborty, A. N. R. S., Nanjundiah, R. S., & Srinivasan, J. ( 2006 ). Theoretical aspects of the onset of Indian summer monsoon from perturbed orography simulations in a GCM. Annales Geophysicae, 24 ( 8 ), 2075.
dc.identifier.citedreferenceChen, G. S., Liu, Z., & Kutzbach, J. E. ( 2014 ). Reexamining the barrier effect of the Tibetan Plateau on the South Asian summer monsoon. Climate of the Past, 10 ( 3 ), 1269 â 1275. https://doi.org/10.5194/cpâ 10â 1269â 2014
dc.identifier.citedreferenceCheng, H., Edwards, R. L., Sinha, A., Spötl, C., Yi, L., Chen, S., et al. ( 2016 ). The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 534 ( 7609 ), 640 â 646. https://doi.org/10.1038/nature18591
dc.identifier.citedreferenceCheng, H., Zhang, P. Z., Spötl, C., Edwards, R. L., Cai, Y. J., Zhang, D. Z., et al. ( 2012 ). The climatic cyclicity in semiaridâ arid central Asia over the past 500,000 years. Geophysical Research Letters, 39, L01705. https://doi.org/10.1029/2011GL050202
dc.identifier.citedreferenceClemens, S., Prell, W., Murray, D., Shimmield, G., & Weedon, G. ( 1991 ). Forcing mechanisms of the Indian Ocean monsoon. Nature, 353 ( 6346 ), 720 â 725. https://doi.org/10.1038/353720a0
dc.identifier.citedreferenceClemens, S. C., & Prell, W. L. ( 2007 ). The timing of orbitalâ scale Indian monsoon changes. Quaternary Science Reviews, 26 ( 3â 4 ), 275 â 278. https://doi.org/10.1016/j.quascirev.2006.11.010
dc.identifier.citedreferenceClemens, S. C., Prell, W. L., & Sun, Y. ( 2010 ). Orbitalâ scale timing and mechanisms driving Late Pleistocene Indoâ Asian summer monsoons: Reinterpreting cave speleothem δ 18 O. Paleoceanography, 25, PA4207. https://doi.org/10.1029/2010PA001926
dc.identifier.citedreferenceConroy, J. L., Noone, D., Cobb, K. M., Moerman, J. W., & Konecky, B. L. ( 2016 ). Paired stable isotopologues in precipitation and vapor: A case study of the amount effect within western tropical Pacific storms. Journal of Geophysical Research: Atmospheres, 121, 3290 â 3303. https://doi.org/10.1002/2015JD023844
dc.identifier.citedreferenceDansgaard, W. ( 1964 ). Stable isotopes in precipitation. Tellus, 16 ( 4 ), 436 â 468.
dc.identifier.citedreferenceDee, S., Emileâ Geay, J., Evans, M. N., Allam, A., Steig, E. J., & Thompson, D. M. ( 2015 ). PRYSM: An openâ source framework for PRoxY System Modeling, with applications to oxygenâ isotope systems. Journal of Advances in Modeling Earth Systems, 7 ( 3 ), 1220 â 1247. https://doi.org/10.1002/2015MS000447
dc.identifier.citedreferenceErb, M. P., Broccoli, A. J., Graham, N. T., Clement, A. C., Wittenberg, A. T., & Vecchi, G. A. ( 2015 ). Response of the equatorial Pacific seasonal cycle to orbital forcing. Journal of Climate, 28 ( 23 ), 9258 â 9276.
dc.identifier.citedreferenceErb, M. P., Jackson, C. S., & Broccoli, A. J. ( 2015 ). Using singleâ forcing GCM simulations to reconstruct and interpret Quaternary climate change. Journal of Climate, 28 ( 24 ), 9746 â 9767. https://doi.org/10.1175/JCLIâ Dâ 15â 0329.1
dc.identifier.citedreferenceFairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D., & McDermott, F. ( 2006 ). Modification and preservation of environmental signals in speleothems. Earthâ Science Reviews, 75 ( 1â 4 ), 105 â 153. https://doi.org/10.1016/j.earscirev.2005.08.003
dc.identifier.citedreferenceFasullo, J., & Webster, P. J. ( 2003 ). A hydrological definition of Indian monsoon onset and withdrawal. Journal of Climate, 16 ( 19 ), 3200 â 3211. https://doi.org/10.1175/1520-0442(2003)016%3C3200a:AHDOIM%3E2.0.CO;2
dc.identifier.citedreferenceFeng, R., Li, J., & Wang, J. ( 2011 ). Regime change of the boreal summer Hadley circulation and its connection with the tropical SST. Journal of Climate, 24 ( 15 ), 3867 â 3877. https://doi.org/10.1175/2011JCLI3959.1
dc.identifier.citedreferenceFeng, R., Poulsen, C. J., & Werner, M. ( 2016 ). Tropical circulation intensification and tectonic extension recorded by Neogene terrestrial δ 18 O records of the western United States. Geology, 44 ( 11 ), 971 â 974. https://doi.org/10.1130/G38212.1
dc.identifier.citedreferenceFeng, R., Poulsen, C. J., Werner, M., Chamberlain, C. P., Mix, H. T., & Mulch, A. ( 2013 ). Early Cenozoic evolution of topography, climate, and stable isotopes in precipitation in the North American Cordillera. American Journal of Science, 313 ( 7 ), 613 â 648. https://doi.org/10.2475/07.2013.01
dc.identifier.citedreferenceFriedman, I., & O’Neil, J. R. ( 1977 ). Data of geochemistry: Compilation of stable isotope fractionation factors of geochemical interest (Vol. 440 ). Washington, DC: US Government Printing Office.
dc.identifier.citedreferenceGadgil, S. ( 2003 ). The Indian monsoon and its variability. Annual Review of Earth and Planetary Sciences, 31 ( 1 ), 429 â 467. https://doi.org/10.1146/annurev.earth.31.100901.141251
dc.identifier.citedreferenceGalewsky, J., Steenâ Larsen, H. C., Field, R. D., Worden, J., Risi, C., & Schneider, M. ( 2016 ). Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Reviews of Geophysics, 54, 809 â 865. https://doi.org/10.1002/2015RG000512
dc.identifier.citedreferenceGoswami, B. N., Krishnamurthy, V., & Annmalai, H. ( 1999 ). A broadâ scale circulation index for the interannual variability of the Indian summer monsoon. Quarterly Journal of the Royal Meteorological Society, 125 ( 554 ), 611 â 633. https://doi.org/10.1002/qj.49712555412
dc.identifier.citedreferenceHe, H., McGinnis, J. W., Song, Z., & Yanai, M. ( 1987 ). Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau. Monthly Weather Review, 115 ( 9 ), 1966 â 1995. https://doi.org/10.1175/1520-0493(1987)115%3C1966:OOTASM%3E2.0.CO;2
dc.identifier.citedreferenceHurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., et al. ( 2013 ). The community Earth system model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94 ( 9 ), 1339 â 1360. https://doi.org/10.1175/BAMSâ Dâ 12â 00121.1
dc.identifier.citedreferenceJoussaume, S., & Braconnot, P. ( 1997 ). Sensitivity of paleoclimate simulation results to season definitions. Journal of Geophysical Research, 102, 1943 â 1956. https://doi.org/10.1029/96JD01989
dc.identifier.citedreferenceKathayat, G., Cheng, H., Sinha, A., Spötl, C., Edwards, R. L., Zhang, H., et al. ( 2016 ). Indian monsoon variability on millennialâ orbital timescales. Scientific Reports, 6 ( 1 ), 24374. https://doi.org/10.1038/srep24374
dc.identifier.citedreferenceKutzbach, J. E. ( 1981 ). Monsoon climate of the early Holocene: climate experiment with the earth’s orbital parameters for 9000 years ago. Science, 214 ( 4516 ), 59 â 61.
dc.identifier.citedreferenceKutzbach, J. E., Liu, X., Liu, Z., & Chen, G. ( 2008 ). Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years. Climate Dynamics, 30 ( 6 ), 567 â 579. https://doi.org/10.1007/s00382â 007â 0308â z
dc.identifier.citedreferenceKutzbach, J. E., & Ottoâ Bliesner, B. L. ( 1982 ). The sensitivity of the Africanâ Asian monsoonal climate to orbital parameter changes for 9000 years BP in a lowâ resolution general circulation model. Journal of the Atmospheric Sciences, 39 ( 6 ), 1177 â 1188. https://doi.org/10.1175/1520-0469(1982)039%3C1177:TSOTAA%3E2.0.CO;2
dc.identifier.citedreferenceLaepple, T., & Huybers, P. ( 2014 ). Ocean surface temperature variability: Large modelâ data differences at decadal and longer periods. Proceedings of the National Academy of Sciences, 111 ( 47 ), 16,682 â 16,687. https://doi.org/10.1073/pnas.1412077111
dc.identifier.citedreferenceLawrence, D. M., & Slater, A. G. ( 2008 ). Incorporating organic soil into a global climate model. Climate Dynamics, 30 ( 2â 3 ), 145 â 160.
dc.identifier.citedreferenceLe Mézo, P., Beaufort, L., Bopp, L., Braconnot, P., & Kageyama, M. ( 2017 ). From monsoon to marine productivity in the Arabian Sea: Insights from glacial and interglacial climates. Climate of the Past, 13 ( 7 ), 759 â 778. https://doi.org/10.5194/cpâ 13â 759â 2017
dc.identifier.citedreferenceLeGrande, A. N., & Schmidt, G. A. ( 2006 ). Global gridded data set of the oxygen isotopic composition in seawater. Geophysical Research Letters, 33, L12604. https://doi.org/10.1029/2006GL026011
dc.identifier.citedreferenceLi, C., & Yanai, M. ( 1996 ). The onset and interannual variability of the Asian summer monsoon in relation to landâ sea thermal contrast. Journal of Climate, 9 ( 2 ), 358 â 375. https://doi.org/10.1175/1520-0442(1996)009%3C0358:TOAIVO%3E2.0.CO;2
dc.identifier.citedreferenceLi, J., Yu, R., Yuan, W., Chen, H., Sun, W., & Zhang, Y. ( 2015 ). Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. Journal of Advances in Modeling Earth Systems, 7 ( 2 ), 774 â 790. https://doi.org/10.1002/2014MS000414
dc.identifier.citedreferenceLiu, X., Liu, Z., Kutzbach, J. E., Clemens, S. C., & Prell, W. L. ( 2006 ). Hemispheric insolation forcing of the Indian Ocean and Asian monsoon: local versus remote impacts. Journal of Climate, 19 ( 23 ), 6195 â 6208.
dc.identifier.citedreferenceLiu, Z., Ottoâ Bliesner, B., Kutzbach, J., Li, L., & Shields, C. ( 2003 ). Coupled climate simulation of the evolution of global monsoons in the Holocene. Journal of Climate, 16 ( 15 ), 2472 â 2490. https://doi.org/10.1175/1520-0442(2003)016%3C2472:CCSOTE%3E2.0.CO;2
dc.identifier.citedreferenceLiu, Z., Wen, X., Brady, E. C., Ottoâ Bliesner, B., Yu, G., Lu, H., et al. ( 2014 ). Chinese cave records and the East Asia summer monsoon. Quaternary Science Reviews, 83, 115 â 128. https://doi.org/10.1016/j.quascirev.2013.10.021
dc.identifier.citedreferenceMcDermott, F. ( 2004 ). Palaeoâ climate reconstruction from stable isotope variations in speleothems: A review. Quaternary Science Reviews, 23 ( 7â 8 ), 901 â 918. https://doi.org/10.1016/j.quascirev.2003.06.021
dc.identifier.citedreferenceMeehl, G. A., Arblaster, J. M., Caron, J. M., Annamalai, H., Jochum, M., Chakraborty, A., & Murtugudde, R. ( 2012 ). Monsoon regimes and processes in CCSM4. Part I: The Asianâ Australian monsoon. Journal of Climate, 25 ( 8 ), 2583 â 2608. https://doi.org/10.1175/JCLIâ Dâ 11â 00184.1
dc.identifier.citedreferenceMeehl, G. A., Washington, W. M., Arblaster, J. M., Hu, A., Teng, H., Kay, J. E., et al. ( 2013 ). Climate change projections in CESM1 (CAM5) compared to CCSM4. Journal of Climate, 26 ( 17 ), 6287 â 6308. https://doi.org/10.1175/JCLIâ Dâ 12â 00572.1
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.