Show simple item record

Low Dose of Bisphosphonate Enhances Sclerostin Antibody‐Induced Trabecular Bone Mass Gains in Brtl/+ Osteogenesis Imperfecta Mouse Model

dc.contributor.authorOlvera, Diana
dc.contributor.authorStolzenfeld, Rachel
dc.contributor.authorMarini, Joan C
dc.contributor.authorCaird, Michelle S
dc.contributor.authorKozloff, Kenneth M
dc.date.accessioned2018-07-13T15:48:20Z
dc.date.available2019-09-04T20:15:39Zen
dc.date.issued2018-07
dc.identifier.citationOlvera, Diana; Stolzenfeld, Rachel; Marini, Joan C; Caird, Michelle S; Kozloff, Kenneth M (2018). "Low Dose of Bisphosphonate Enhances Sclerostin Antibody‐Induced Trabecular Bone Mass Gains in Brtl/+ Osteogenesis Imperfecta Mouse Model." Journal of Bone and Mineral Research 33(7): 1272-1282.
dc.identifier.issn0884-0431
dc.identifier.issn1523-4681
dc.identifier.urihttps://hdl.handle.net/2027.42/144688
dc.description.abstractOsteogenesis imperfecta (OI) is a genetic disorder characterized by altered bone quality and imbalanced bone remodeling, leading to skeletal fractures that are most prominent during childhood. Treatments for OI have focused on restoring pediatric bone density and architecture to recover functional strength and consequently reduce fragility. Though antiresorptive agents like bisphosphonates (BPs) are currently the most common intervention for the treatment of OI, a number of studies have shown efficacy of sclerostin antibody (SclAb) in inducing gains in bone mass and reducing fragility in OI mouse models. In this study, the effects of the concurrent use of BP and SclAb were evaluated during bone growth in a mouse harboring an OI‐causing Gly→Cys mutation on col1a1. A single dose of antiresorptive BP facilitated the anabolic action of SclAb by increasing availability of surfaces for new bone formation via retention of primary trabeculae that would otherwise be remodeled. Chronic effects of concurrent administration of BP and SclAb revealed that accumulating cycles conferred synergistic gains in trabecular mass and vertebral stiffness, suggesting a distinct advantage of both therapies combined. Cortical gains in mass and strength occurred through SclAb alone, independent of presence of BP. In conclusion, these preclinical results support the scientific hypothesis that minimal antiresorptive treatment can amplify the effects of SclAb during early stages of skeletal growth to further improve bone structure and rigidity, a beneficial outcome for children with OI. © 2018 American Society for Bone and Mineral Research.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBISPHOSPHONATE
dc.subject.otherSCLEROSTIN ANTIBODY
dc.subject.otherPRECLINICAL STUDIES
dc.subject.otherANABOLICS
dc.subject.otherOSTEOGENESIS IMPERFECTA
dc.titleLow Dose of Bisphosphonate Enhances Sclerostin Antibody‐Induced Trabecular Bone Mass Gains in Brtl/+ Osteogenesis Imperfecta Mouse Model
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialities
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144688/1/jbmr3421.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144688/2/jbmr3421_am.pdf
dc.identifier.doi10.1002/jbmr.3421
dc.identifier.sourceJournal of Bone and Mineral Research
dc.identifier.citedreferenceAnam EA, Rauch F, Glorieux FH, Fassier F, Hamdy R. Osteotomy healing in children with osteogenesis imperfecta receiving bisphosphonate treatment. J Bone Miner Res. 2015; 30 ( 8 ): 1362 – 8.
dc.identifier.citedreferenceBoskey AL, Marino J, Spevak L, et al. Are changes in composition in response to treatment of a mouse model of osteogenesis imperfecta sex‐dependent ? Clin Orthop Relat Res. 2015; 473 ( 8 ): 2587 – 98.
dc.identifier.citedreferenceHald JD, Evangelou E, Langdahl BL, Ralston SH. Bisphosphonates for the prevention of fractures in osteogenesis imperfecta: meta‐analysis of placebo‐controlled trials. J Bone Miner Res. 2015; 30 ( 5 ): 929 – 33.
dc.identifier.citedreferenceGatti D, Antoniazzi F, Prizzi R, et al. Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res. 2005; 20 ( 5 ): 758 – 63.
dc.identifier.citedreferenceLetocha AD, Cintas HL, Troendle JF, et al. Controlled trial of pamidronate in children with types III and IV osteogenesis imperfecta confirms vertebral gains but not short‐term functional improvement. J Bone Miner Res. 2005; 20 ( 6 ): 977 – 86.
dc.identifier.citedreferenceSakkers R, Kok D, Engelbert R, et al. Skeletal effects and functional outcome with olpadronate in children with osteogenesis imperfecta: a 2‐year randomised placebo‐controlled study. Lancet. 2004; 363 ( 9419 ): 1427 – 31.
dc.identifier.citedreferenceWard LM, Rauch F, Whyte MP, et al. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo‐controlled study. J Clin Endocrinol Metab. 2011; 96 ( 2 ): 355 – 64.
dc.identifier.citedreferencePapapoulos SE, Cremers SCLM. Prolonged bisphosphonate release after treatment in children. N Engl J Med. 2007; 356 ( 10 ): 1075 – 6.
dc.identifier.citedreferenceKomatsubara S, Mori S, Mashiba T, et al. Suppressed bone turnover by long‐term bisphosphonate treatment accumulates microdamage but maintains intrinsic material properties in cortical bone of dog rib. J Bone Miner Res. 2004; 19 ( 6 ): 999 – 1005.
dc.identifier.citedreferenceRecknor CP, Recker RR, Benson CT, et al. the effect of discontinuing treatment with blosozumab: follow‐up results of a phase 2 randomized clinical trial in postmenopausal women with low bone mineral density. J Bone Miner Res. 2015; 30 ( 9 ): 1717 – 25.
dc.identifier.citedreferenceLi X, Ominsky MS, Warmington KS, et al. Increased bone formation and bone mass induced by sclerostin antibody is not affected by pretreatment or cotreatment with alendronate in osteopenic, ovariectomized rats. Endocrinology. 2011; 152 ( 9 ): 3312 – 22.
dc.identifier.citedreferenceLittle DG, Peacock L, Mikulec K, et al. Combination sclerostin antibody and zoledronic acid treatment outperforms either treatment alone in a mouse model of osteogenesis imperfecta. Bone. 2017; 101: 96 – 103.
dc.identifier.citedreferenceIshizuka M, Tsuji S, Hirabayashi M, Kaneko K. Characteristic bands manifesting as zebra lines on radiographs in osteogenesis imperfecta. Indian J Pediatr. 2017; 84 ( 4 ): 336.
dc.identifier.citedreferenceCosman F, Crittenden DB, Adachi JD, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016; 375 ( 16 ): 1532 – 43.
dc.identifier.citedreferenceWen D, Qing L, Harrison G, Golub E, Akintoye SO. Anatomic site variability in rat skeletal uptake and desorption of fluorescently labeled bisphosphonate. Oral Dis. 2011; 17 ( 4 ): 427 – 32.
dc.identifier.citedreferencePapakonstantinou O, Sakalidou M, Atsali E, Bizimi V, Mendrinou M, Alexopoulou E. Radiographic and MR imaging findings of the spine after bisphosphonate treatment, in a child with idiopathic juvenile osteoporosis. Case Rep Radiol. 2015; 2015: 727510.
dc.identifier.citedreferenceBoyce AM, Tosi LL, Paul SM. Bisphosphonate treatment for children with disabling conditions. PM R. 2014; 6 ( 5 ): 427 – 36.
dc.identifier.citedreferenceRauch F, Travers R, Plotkin H, Glorieux FH. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest. 2002; 110 ( 9 ): 1293 – 9.
dc.identifier.citedreferenceSzalay EA. Bisphosphonate use in children with pediatric osteoporosis and other bone conditions. J Pediatr Rehabil Med. 2014; 7 ( 2 ): 125 – 32.
dc.identifier.citedreferenceGlorieux FH. Experience with bisphosphonates in osteogenesis imperfecta. Pediatrics. 2007; 119 Suppl 2: S163 – 5.
dc.identifier.citedreferenceVesterby A, Mosekilde L, Gundersen HJG, et al. Biologically meaningful determinants of the in vitro strength of lumbar vertebrae. Bone. 1991; 12 ( 3 ): 219 – 24.
dc.identifier.citedreferenceWegrzyn J, Roux J‐P., Arlot ME, et al. Determinants of the mechanical behavior of human lumbar vertebrae after simulated mild fracture. J Bone Miner Res. 2011; 26 ( 4 ): 739 – 46.
dc.identifier.citedreferenceRitzel H, Amling M, Pösl M, Hahn M, Delling G. The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty‐seven autopsy specimens. J Bone Miner Res. 1997; 12 ( 1 ): 89 – 95.
dc.identifier.citedreferenceForlino A, Marini JC. Osteogenesis imperfecta. Lancet. 2016; 387 ( 10028 ): 1657 – 71.
dc.identifier.citedreferenceRauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004; 363 ( 9418 ): 1377 – 85.
dc.identifier.citedreferenceRoughley PJ, Rauch F, Glorieux FH. Osteogenesis imperfecta—clinical and molecular diversity. Eur Cell Mater. 2003; 5: 41 – 7; discussion 7.
dc.identifier.citedreferenceRussell RG, Croucher PI, Rogers MJ. Bisphosphonates: pharmacology, mechanisms of action and clinical uses. Osteoporos Int. 1999; 9 Suppl 2: S66 – 80.
dc.identifier.citedreferenceLand C, Rauch F, Travers R, Glorieux FH. Osteogenesis imperfecta type VI in childhood and adolescence: effects of cyclical intravenous pamidronate treatment. Bone. 2007; 40 ( 3 ): 638 – 44.
dc.identifier.citedreferenceCastillo H, Samson‐Fang L. Effects of bisphosphonates in children with osteogenesis imperfecta: an AACPDM systematic review. Dev Med Child Neurol. 2009; 51 ( 1 ): 17 – 29.
dc.identifier.citedreferenceRauch F, Munns CF, Land C, Cheung M, Glorieux FH. Risedronate in the treatment of mild pediatric osteogenesis imperfecta: a randomized placebo‐controlled study. J Bone Miner Res. 2009; 24 ( 7 ): 1282 – 9.
dc.identifier.citedreferenceSalehpour S, Tavakkoli S. Cyclic pamidronate therapy in children with osteogenesis imperfecta. J Pediatr Endocrinol Metab. 2010; 23 ( 1‐2 ): 73 – 80.
dc.identifier.citedreferenceBishop N, Harrison R, Ahmed F, et al. A randomized, controlled dose‐ranging study of risedronate in children with moderate and severe osteogenesis imperfecta. J Bone Miner Res. 2010; 25 ( 1 ): 32 – 40.
dc.identifier.citedreferenceBishop N, Adami S, Ahmed SF, et al. Risedronate in children with osteogenesis imperfecta: a randomised, double‐blind, placebo‐controlled trial. Lancet. 2013; 382 ( 9902 ): 1424 – 32.
dc.identifier.citedreferencePalomo T, Andrade MC, Peters BS, et al. Evaluation of a modified pamidronate protocol for the treatment of osteogenesis imperfecta. Calcif Tissue Int. 2016; 98 ( 1 ): 42 – 8.
dc.identifier.citedreferenceCamacho NP, Raggio CL, Doty SB, et al. A controlled study of the effects of alendronate in a growing mouse model of osteogenesis imperfecta. Calcif Tissue Int. 2001; 69 ( 2 ): 94 – 101.
dc.identifier.citedreferenceZhu ED, Louis L, Brooks DJ, Bouxsein ML, Demay MB. Effect of bisphosphonates on the rapidly growing male murine skeleton. Endocrinology. 2014; 155 ( 4 ): 1188 – 96.
dc.identifier.citedreferenceEvans KD, Sheppard LE, Rao SH, Martin RB, Oberbauer AM. Pamidronate alters the growth plate in the oim mouse model for osteogenesis imperfecta. Int J Biomed Sci. 2009; 5 ( 4 ): 345 – 52.
dc.identifier.citedreferenceRao SH, Evans KD, Oberbauer AM, Martin RB. Bisphosphonate treatment in the oim mouse model alters bone modeling during growth. J Biomech. 2008; 41 ( 16 ): 3371 – 6.
dc.identifier.citedreferenceMcCarthy EA, Raggio CL, Hossack MD, et al. Alendronate treatment for infants with osteogenesis imperfecta: demonstration of efficacy in a mouse model. Pediatr Res. 2002; 52 ( 5 ): 660 – 70.
dc.identifier.citedreferenceUveges TE, Kozloff KM, Ty JM, et al. Alendronate treatment of the Brtl osteogenesis imperfecta mouse improves femoral geometry and load response before fracture but decreases predicted material properties and has detrimental effects on osteoblasts and bone formation. J Bone Miner Res. 2009; 24 ( 5 ): 849 – 59.
dc.identifier.citedreferenceVasanwala RF, Sanghrajka A, Bishop NJ, Hogler W. Recurrent proximal femur fractures in a teenager with osteogenesis imperfecta on continuous bisphosphonate therapy: are we overtreating ? J Bone Miner Res. 2016; 31 ( 7 ): 1449 – 54.
dc.identifier.citedreferenceSinder BP, White LE, Salemi JD, et al. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength. Osteoporos Int. 2014; 25 ( 8 ): 2097 – 107.
dc.identifier.citedreferenceSinder BP, Salemi JD, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone. 2015; 71: 115 – 23.
dc.identifier.citedreferenceSinder BP, Lloyd WR, Salemi JD, et al. Effect of anti‐sclerostin therapy and osteogenesis imperfecta on tissue‐level properties in growing and adult mice while controlling for tissue age. Bone. 2016; 84: 222 – 9.
dc.identifier.citedreferenceSinder BP, Eddy MM, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta. J Bone Miner Res. 2013; 28 ( 1 ): 73 – 80.
dc.identifier.citedreferencePerosky JE, Khoury BM, Jenks TN, et al. Single dose of bisphosphonate preserves gains in bone mass following cessation of sclerostin antibody in Brtl/+ osteogenesis imperfecta model. Bone. 2016; 93: 79 – 85.
dc.identifier.citedreferenceGlorieux FH, Devogelaer JP, Durigova M, et al. BPS804 anti‐sclerostin antibody in adults with moderate osteogenesis imperfecta: results of a randomized phase 2a trial. J Bone Miner Res. 2017; 32 ( 7 ): 1496 – 504.
dc.identifier.citedreferencePoole KE, van Bezooijen RL, Loveridge N, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005; 19 ( 13 ): 1842 – 4.
dc.identifier.citedreferenceForlino A, Porter FD, Lee EJ, Westphal H, Marini JC. Use of the Cre/lox recombination system to develop a non‐lethal knock‐in murine model for osteogenesis imperfecta with an alpha1(I) G349C substitution. Variability in phenotype in BrtlIV mice. J Biol Chem. 1999; 274 ( 53 ): 37923 – 31.
dc.identifier.citedreferenceMeganck JA, Kozloff KM, Thornton MM, Broski SM, Goldstein SA. Beam hardening artifacts in micro‐computed tomography scanning can be reduced by X‐ray beam filtration and the resulting images can be used to accurately measure BMD. Bone. 2009; 45 ( 6 ): 1104 – 16.
dc.identifier.citedreferenceGlorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998; 339 ( 14 ): 947 – 52.
dc.identifier.citedreferenceKozloff KM, Volakis LI, Marini JC, Caird MS. Near‐infrared fluorescent probe traces bisphosphonate delivery and retention in vivo. J Bone Miner Res. 2010; 25 ( 8 ): 1748 – 58.
dc.identifier.citedreferenceOtsu N. A threshold selection method from gray‐level histograms. IEEE Trans Syst Man Cybern. 1979; 9 ( 1 ): 62 – 6.
dc.identifier.citedreferenceChakraborty PP, Biswas SN, Patra S, Santra G. “ Zebra stripe” sign and “bone in bone” sign in cyclical bisphosphonate therapy. J Clin Diagn Res. 2017; 11 ( 2): RJ01 –2.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.