Show simple item record

Menin regulates the serine biosynthetic pathway in Ewing sarcoma

dc.contributor.authorSvoboda, Laurie K
dc.contributor.authorTeh, Selina Shiqing K
dc.contributor.authorSud, Sudha
dc.contributor.authorKerk, Samuel
dc.contributor.authorZebolsky, Aaron
dc.contributor.authorTreichel, Sydney
dc.contributor.authorThomas, Dafydd
dc.contributor.authorHalbrook, Christopher J
dc.contributor.authorLee, Ho‐joon
dc.contributor.authorKremer, Daniel
dc.contributor.authorZhang, Li
dc.contributor.authorKlossowski, Szymon
dc.contributor.authorBankhead, Armand R
dc.contributor.authorMagnuson, Brian
dc.contributor.authorLjungman, Mats
dc.contributor.authorCierpicki, Tomasz
dc.contributor.authorGrembecka, Jolanta
dc.contributor.authorLyssiotis, Costas A
dc.contributor.authorLawlor, Elizabeth R
dc.date.accessioned2018-07-13T15:48:40Z
dc.date.available2019-09-04T20:15:39Zen
dc.date.issued2018-07
dc.identifier.citationSvoboda, Laurie K; Teh, Selina Shiqing K; Sud, Sudha; Kerk, Samuel; Zebolsky, Aaron; Treichel, Sydney; Thomas, Dafydd; Halbrook, Christopher J; Lee, Ho‐joon ; Kremer, Daniel; Zhang, Li; Klossowski, Szymon; Bankhead, Armand R; Magnuson, Brian; Ljungman, Mats; Cierpicki, Tomasz; Grembecka, Jolanta; Lyssiotis, Costas A; Lawlor, Elizabeth R (2018). "Menin regulates the serine biosynthetic pathway in Ewing sarcoma." The Journal of Pathology 245(3): 324-336.
dc.identifier.issn0022-3417
dc.identifier.issn1096-9896
dc.identifier.urihttps://hdl.handle.net/2027.42/144706
dc.description.abstractDevelopmental transcription programs are epigenetically regulated by multiâ protein complexes, including the meninâ and MLLâ containing trithorax (TrxG) complexes, which promote gene transcription by depositing the H3K4me3 activating mark at target gene promoters. We recently reported that in Ewing sarcoma, MLL1 (lysine methyltransferase 2A, KMT2A) and menin are overexpressed and function as oncogenes. Small molecule inhibition of the meninâ MLL interaction leads to loss of menin and MLL1 protein expression, and to inhibition of growth and tumorigenicity. Here, we have investigated the mechanistic basis of meninâ MLLâ mediated oncogenic activity in Ewing sarcoma. Bromouridine sequencing (Bruâ seq) was performed to identify changes in nascent gene transcription in Ewing sarcoma cells, following exposure to the meninâ MLL interaction inhibitor MIâ 503. Meninâ MLL inhibition resulted in early and widespread reprogramming of metabolic processes. In particular, the serine biosynthetic pathway (SSP) was the pathway most significantly affected by MIâ 503 treatment. Baseline expression of SSP genes and proteins (PHGDH, PSAT1, and PSPH), and metabolic flux through the SSP were confirmed to be high in Ewing sarcoma. In addition, inhibition of PHGDH resulted in reduced cell proliferation, viability, and tumor growth in vivo, revealing a key dependency of Ewing sarcoma on the SSP. Loss of function studies validated a mechanistic link between menin and the SSP. Specifically, inhibition of menin resulted in diminished expression of SSP genes, reduced H3K4me3 enrichment at the PHGDH promoter, and complete abrogation of de novo serine and glycine biosynthesis, as demonstrated by metabolic tracing studies with 13Câ labeled glucose. These data demonstrate that the SSP is highly active in Ewing sarcoma and that its oncogenic activation is maintained, at least in part, by meninâ dependent epigenetic mechanisms involving trithorax complexes. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
dc.publisherJohn Wiley & Sons, Ltd
dc.subject.othercancer metabolism
dc.subject.otherepigenetic
dc.subject.otherEWSâ FLI1
dc.subject.otherEwing sarcoma
dc.subject.otherPHGDH
dc.titleMenin regulates the serine biosynthetic pathway in Ewing sarcoma
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPathology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144706/1/path5085_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/144706/2/path5085.pdf
dc.identifier.doi10.1002/path.5085
dc.identifier.sourceThe Journal of Pathology
dc.identifier.citedreferenceSavola S, Klami A, Tripathi A, et al. Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors. BMC Cancer 2009; 9: 17.
dc.identifier.citedreferenceTirode F, Surdez D, Ma X, et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with coâ association of STAG2 and TP53 mutations. Cancer Discov 2014; 4: 1342 â 1353.
dc.identifier.citedreferenceCrompton BD, Stewart C, Taylorâ Weiner A, et al. The genomic landscape of pediatric Ewing sarcoma. Cancer Discov 2014; 4: 1326 â 1341.
dc.identifier.citedreferenceBrohl AS, Solomon DA, Chang W, et al. The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet 2014; 10: e1004475.
dc.identifier.citedreferenceTanner JM, Bensard C, Wei P, et al. EWS/FLI is a master regulator of metabolic reprogramming in Ewing sarcoma. Mol Cancer Res 2017; 15: 1517 â 1530.
dc.identifier.citedreferenceBorkin D, He S, Miao H, et al. Pharmacologic inhibition of the meninâ MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell 2015; 27: 589 â 602.
dc.identifier.citedreferencePacold ME, Brimacombe KR, Chan SH, et al. A PHGDH inhibitor reveals coordination of serine synthesis and oneâ carbon unit fate. Nat Chem Biol 2016; 12: 452 â 458.
dc.identifier.citedreferenceMullarky E, Lucki NC, Beheshti Zavareh R, et al. Identification of a small molecule inhibitor of 3â phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc Natl Acad Sci U S A 2016; 113: 1778 â 1783.
dc.identifier.citedreferenceAnders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010; 11: R106.
dc.identifier.citedreferenceAshburner M, Ball CA, Blake JA, et al. Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25 â 29.
dc.identifier.citedreferenceGene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res 2015; 43: D1049 â D1056.
dc.identifier.citedreferenceCarlson MR, Pages H, Arora S, et al. Genomic annotation resources in R/Bioconductor. Methods Mol Biol 2016; 1418: 67 â 90.
dc.identifier.citedreferenceKanehisa M, Sato Y, Kawashima M, et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44: D457 â D462.
dc.identifier.citedreferencevon Levetzow C, Jiang X, Gwye Y, et al. Modeling initiation of Ewing sarcoma in human neural crest cells. PLoS One 2011; 6: e19305.
dc.identifier.citedreferenceGrembecka J, He S, Shi A, et al. Meninâ MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat Chem Biol 2012; 8: 277 â 284.
dc.identifier.citedreferencePostelâ Vinay S, Veron AS, Tirode F, et al. Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat Genet 2012; 44: 323 â 327.
dc.identifier.citedreferenceVolchenboum SL, Andrade J, Huang L, et al. Gene expression profiling of Ewing sarcoma tumors reveals the prognostic importance of tumorâ stromal interactions: a report from the Children’s Oncology Group. J Pathol Clin Res 2015; 1: 83 â 94.
dc.identifier.citedreferenceJain M, Nilsson R, Sharma S, et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012; 336: 1040 â 1044.
dc.identifier.citedreferenceNarkewicz MR, Sauls SD, Tjoa SS, et al. Evidence for intracellular partitioning of serine and glycine metabolism in Chinese hamster ovary cells. Biochem J 1996; 313 ( Pt 3 ): 991 â 996.
dc.identifier.citedreferenceDucker GS, Chen L, Morscher RJ, et al. Reversal of cytosolic oneâ carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab 2016; 24: 640 â 641.
dc.identifier.citedreferenceTruong V, Huang S, Dennis J, et al. Blood triglyceride levels are associated with DNA methylation at the serine metabolism gene PHGDH. Sci Rep 2017; 7: 11207.
dc.identifier.citedreferenceMattaini KR, Sullivan MR, Vander Heiden MG. The importance of serine metabolism in cancer. J Cell Biol 2016; 214: 249 â 257.
dc.identifier.citedreferenceAmelio I, Cutruzzola F, Antonov A, et al. Serine and glycine metabolism in cancer. Trends Biochem Sci 2014; 39: 191 â 198.
dc.identifier.citedreferenceRoss KC, Andrews AJ, Marion CD, et al. Identification of the serine biosynthesis pathway as a critical component of BRAF inhibitor resistance of melanoma, pancreatic, and nonâ small cell lung cancer cells. Mol Cancer Ther 2017; 16: 1596 â 1609.
dc.identifier.citedreferenceZhang B, Zheng A, Hydbring P, et al. PHGDH defines a metabolic subtype in lung adenocarcinomas with poor prognosis. Cell Rep 2017; 19: 2289 â 2303.
dc.identifier.citedreferencePollari S, Kakonen SM, Edgren H, et al. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat 2011; 125: 421 â 430.
dc.identifier.citedreferenceLi BE, Gan T, Meyerson M, et al. Distinct pathways regulated by menin and by MLL1 in hematopoietic stem cells and developing B cells. Blood 2013; 122: 2039 â 2046.
dc.identifier.citedreferenceWu G, Yuan M, Shen S, et al. Menin enhances câ Mycâ mediated transcription to promote cancer progression. Nat Commun 2017; 8: 15278.
dc.identifier.citedreferenceSowa H, Kaji H, Hendy GN, et al. Menin is required for bone morphogenetic protein 2â and transforming growth factor βâ regulated osteoblastic differentiation through interaction with Smads and Runx2. J Biol Chem 2004; 279: 40267 â 40275.
dc.identifier.citedreferenceWang Y, Ozawa A, Zaman S, et al. The tumor suppressor protein menin inhibits AKT activation by regulating its cellular localization. Cancer Res 2011; 71: 371 â 382.
dc.identifier.citedreferenceGetz AM, Visser F, Bell EM, et al. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons. Sci Rep 2016; 6: 31779.
dc.identifier.citedreferencePedersen EA, Menon R, Bailey KM, et al. Activation of Wnt/betaâ catenin in Ewing sarcoma cells antagonizes EWS/ETS function and promotes phenotypic transition to more metastatic cell states. Cancer Res 2016; 76: 5040 â 5053.
dc.identifier.citedreferenceKrook MA, Nicholls LA, Scannell CA, et al. Stressâ induced CXCR4 promotes migration and invasion of Ewing sarcoma. Mol Cancer Res 2014; 12: 953 â 964.
dc.identifier.citedreferenceFranzetti GA, Laudâ Duval K, van der Ent W, et al. Cellâ toâ cell heterogeneity of EWSR1â FLI1 activity determines proliferation/migration choices in Ewing sarcoma cells. Oncogene 2017; 36: 3505 â 3514.
dc.identifier.citedreferenceHosios AM, Hecht VC, Danai LV, et al. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev Cell 2016; 36: 540 â 549.
dc.identifier.citedreferenceHwang IY, Kwak S, Lee S, et al. Psat1â dependent fluctuations in alphaâ ketoglutarate affect the timing of ESC differentiation. Cell Metab 2016; 24: 494 â 501.
dc.identifier.citedreferenceCarey BW, Finley LW, Cross JR, et al. Intracellular alphaâ ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 2015; 518: 413 â 416.
dc.identifier.citedreferencePaulsen MT, Veloso A, Prasad J, et al. Use of Bruâ Seq and BruChaseâ Seq for genomeâ wide assessment of the synthesis and stability of RNA. Methods 2014; 67: 45 â 54.
dc.identifier.citedreferenceYang M, Vousden KH. Serine and oneâ carbon metabolism in cancer. Nat Rev Cancer 2016; 16: 650 â 662.
dc.identifier.citedreferencePossemato R, Marks KM, Shaul YD, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011; 476: 346 â 350.
dc.identifier.citedreferenceDeNicola GM, Chen PH, Mullarky E, et al. NRF2 regulates serine biosynthesis in nonâ small cell lung cancer. Nat Genet 2015; 47: 1475 â 1481.
dc.identifier.citedreferenceMaddocks OD, Labuschagne CF, Adams PD, et al. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol Cell 2016; 61: 210 â 221.
dc.identifier.citedreferenceBalamuth NJ, Womer RB. Ewing’s sarcoma. Lancet Oncol 2010; 11: 184 â 192.
dc.identifier.citedreferenceArnaldez FI, Helman LJ. New strategies in Ewing sarcoma: lost in translation? Clin Cancer Res 2014; 20: 3050 â 3056.
dc.identifier.citedreferenceLawlor ER, Sorensen PH. Twenty years on: what do we really know about Ewing sarcoma and what is the path forward? Crit Rev Oncog 2015; 20: 155 â 171.
dc.identifier.citedreferenceGinsberg JP, Goodman P, Leisenring W, et al. Longâ term survivors of childhood Ewing sarcoma: report from the childhood cancer survivor study. J Natl Cancer Inst 2010; 102: 1272 â 1283.
dc.identifier.citedreferenceArmstrong GT, Kawashima T, Leisenring W, et al. Aging and risk of severe, disabling, lifeâ threatening, and fatal events in the childhood cancer survivor study. J Clin Oncol 2014; 32: 1218 â 1227.
dc.identifier.citedreferenceYoun P, Milano MT, Constine LS, et al. Longâ term causeâ specific mortality in survivors of adolescent and young adult bone and soft tissue sarcoma: a populationâ based study of 28,844 patients. Cancer 2014; 120: 2334 â 2342.
dc.identifier.citedreferenceTeepen JC, van Leeuwen FE, Tissing WJ, et al. Longâ term risk of subsequent malignant neoplasms after treatment of childhood cancer in the DCOG LATER study cohort: role of chemotherapy. J Clin Oncol 2017; 35: 2288 â 2298.
dc.identifier.citedreferenceBoulay G, Sandoval GJ, Riggi N, et al. Cancerâ specific retargeting of BAF complexes by a prionâ like domain. Cell 2017; 171: 163 â 178.e19.
dc.identifier.citedreferenceRiggi N, Knoechel B, Gillespie SM, et al. EWSâ FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 2014; 26: 668 â 681.
dc.identifier.citedreferenceRiggi N, Suva ML, Suva D, et al. EWSâ FLIâ 1 expression triggers a Ewing’s sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res 2008; 68: 2176 â 2185.
dc.identifier.citedreferenceTomazou EM, Sheffield NC, Schmidl C, et al. Epigenome mapping reveals distinct modes of gene regulation and widespread enhancer reprogramming by the oncogenic fusion protein EWSâ FLI1. Cell Rep 2015; 10: 1082 â 1095.
dc.identifier.citedreferenceSchuettengruber B, Bourbon HM, Di Croce L, et al. Genome regulation by polycomb and trithorax: 70 years and counting. Cell 2017; 171: 34 â 57.
dc.identifier.citedreferenceSvoboda LK, Bailey N, Van Noord RA, et al. Tumorigenicity of Ewing sarcoma is critically dependent on the trithorax proteins MLL1 and menin. Oncotarget 2017; 8: 458 â 471.
dc.identifier.citedreferenceWong CC, Qian Y, Yu J. Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 2017; 36: 3359 â 3374.
dc.identifier.citedreferenceLocasale JW, Grassian AR, Melman T, et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 2011; 43: 869 â 874.
dc.identifier.citedreferenceLiu M, Xia Y, Ding J, et al. Transcriptional profiling reveals a common metabolic program in highâ risk human neuroblastoma and mouse neuroblastoma sphereâ forming cells. Cell Rep 2016; 17: 609 â 623.
dc.identifier.citedreferenceBao XR, Ong SE, Goldberger O, et al. Mitochondrial dysfunction remodels oneâ carbon metabolism in human cells. Elife 2016; 5: e10575.
dc.identifier.citedreferenceYe J, Mancuso A, Tong X, et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc Natl Acad Sci U S A 2012; 109: 6904 â 6909.
dc.identifier.citedreferenceZhao E, Ding J, Xia Y, et al. KDM4C and ATF4 cooperate in transcriptional control of amino acid metabolism. Cell Rep 2016; 14: 506 â 519.
dc.identifier.citedreferenceDing J, Li T, Wang X, et al. The histone H3 methyltransferase G9A epigenetically activates the serineâ glycine synthesis pathway to sustain cancer cell survival and proliferation. Cell Metab 2013; 18: 896 â 907.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.