Show simple item record

Ionizing radiation‐induced acoustics for radiotherapy and diagnostic radiology applications

dc.contributor.authorHickling, Susannah
dc.contributor.authorXiang, Liangzhong
dc.contributor.authorJones, Kevin C.
dc.contributor.authorParodi, Katia
dc.contributor.authorAssmann, Walter
dc.contributor.authorAvery, Stephen
dc.contributor.authorHobson, Maritza
dc.contributor.authorEl Naqa, Issam
dc.date.accessioned2018-08-13T18:48:21Z
dc.date.available2019-09-04T20:15:38Zen
dc.date.issued2018-07
dc.identifier.citationHickling, Susannah; Xiang, Liangzhong; Jones, Kevin C.; Parodi, Katia; Assmann, Walter; Avery, Stephen; Hobson, Maritza; El Naqa, Issam (2018). "Ionizing radiation‐induced acoustics for radiotherapy and diagnostic radiology applications." Medical Physics 45(7): e707-e721.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/145211
dc.publisherPlenum Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlow‐dose imaging
dc.subject.otherproton range verification
dc.subject.otherradiation acoustics
dc.subject.otherthermoacoustic effect
dc.subject.otherphoton beam dosimetry
dc.titleIonizing radiation‐induced acoustics for radiotherapy and diagnostic radiology applications
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145211/1/mp12929.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145211/2/mp12929_am.pdf
dc.identifier.doi10.1002/mp.12929
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceJones KC, Stappen FV, Bawiec CR, et al. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital‐based clinical cyclotron. Med Phys. 2015; 42: 7090 – 7097.
dc.identifier.citedreferencePatch SK, Kireeff Covo M, Jackson A. et al. Thermoacoustic range verification using a clinical ultrasound array provides perfectly co‐registered overlay of the Bragg peak onto an ultrasound image. Phys Med Biol. 2016; 61: 5621 – 5638.
dc.identifier.citedreferenceJones KC, Vander Stappen F, Sehgal CM, Avery S. Acoustic time‐of‐flight for proton range verification in water. Med Phys. 2016; 43: 5213 – 5224.
dc.identifier.citedreferenceNie W, Jones KC, Petro S, Kassaee A, Sehgal CM, Avery S. Proton range verification in homogeneous materials through acoustic measurements. Phys Med Biol. 2018; 63: 025036.
dc.identifier.citedreferencePatch SK, Hoff DEM, Webb TB, Sobotka LG, Zhao T. Two‐stage ionoacoustic range verification leveraging Monte Carlo and acoustic simulations to stably account for tissue inhomogeneity and accelerator‐specific time structure – a simulation study. Med Phys. 2017; 45: 783 – 793.
dc.identifier.citedreferenceKellnberger S, Assmann W, Lehrack S, et al. Ionoacoustic tomography of the proton Bragg peak in combination with ultrasound and optoacoustic imaging. Sci Rep. 2016; 6: 29305.
dc.identifier.citedreferenceJones K, Nie W, Chu J, et al. Acoustic‐based proton range verification in heterogeneous tissue: simulation studies. Phys Med Biol. 2018; 63: 025018.
dc.identifier.citedreferenceKundu T. Acoustic source localization. Ultrasonics. 2014; 54: 25 – 38.
dc.identifier.citedreferenceDierolf M, Menzel A, Thibault P, et al. Ptychographic X‐ray computed tomography at the nanoscale. Nature. 2010; 467: 436 – 439.
dc.identifier.citedreferenceGaffney KJ, Chapman HN. Imaging atomic structure and dynamics with ultrafast X‐ray scattering. Science. 2007; 316: 1444 – 1448.
dc.identifier.citedreferenceMiao J, Ishikawa T, Robinson IK, Murnane MM. Beyond crystallography: diffractive imaging using coherent x‐ray light sources. Science. 2015; 348: 530 – 535.
dc.identifier.citedreferenceNeutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J. Potential for biomolecular imaging with femtosecond X‐ray pulses. Nature. 2000; 406: 752 – 757.
dc.identifier.citedreferenceRobinson AL. High‐resolution imaging with soft x‐rays. Science. 1982; 215: 150 – 152.
dc.identifier.citedreferenceRobinson AL. Imaging unaltered cell structures with x‐rays. Science. 1987; 237: 723 – 724.
dc.identifier.citedreferenceRowlands JA. Material change for X‐ray detectors. Nature. 2017; 550: 47.
dc.identifier.citedreferenceSchroer CG. X‐ray imaging: the chemistry inside. Nature. 2011; 476: 159.
dc.identifier.citedreferenceService RF. Brilliant X‐rays reveal fruits of a brilliant mind. Science. 2006; 313: 744.
dc.identifier.citedreferenceTegze M, Faigel G, Marchesini S, Belakhovsky M, Ulrich O. Imaging light atoms by X‐ray holography. Nature. 2000; 407: 38.
dc.identifier.citedreferenceRobinson AL. Image reconstruction (I): computerized X‐ray scanners. Science. 1975; 190: 542 – 593.
dc.identifier.citedreferenceLin EC. Radiation risk from medical imaging. Mayo Clin Proc. 2010; 85: 1142 – 1146.
dc.identifier.citedreferenceHobbs JB, Goldstein N, Lind KE, Elder D, Dodd GD, Borgstede JP. Physician knowledge of radiation exposure and risk in medical imaging. J Am Coll Radiol. 2018; 15: 34 – 43.
dc.identifier.citedreferenceXiang L, Tang S, Ahmad M, Xing L. High resolution x‐ray‐induced acoustic tomography. Sci Rep. 2016; 6: 26118.
dc.identifier.citedreferenceTang S, Nguyen DH, Zarafshani A, et al. X‐ray‐induced acoustic computed tomography with an ultrasound transducer ring‐array. Appl Phys Lett. 2017; 110: 103504.
dc.identifier.citedreferenceUmstadter DP. All‐laser‐driven Thomson X‐ray sources. Contemp Phys. 2015; 56: 417 – 431.
dc.identifier.citedreferenceChen S, Golovin G, Miller C, et al. Shielded radiography with a laser‐driven MeV‐energy X‐ray source. Nucl Instrum Methods Phys Res Sect B. 2016; 366: 217 – 223.
dc.identifier.citedreferenceTang S, Yang K, Chen Y, Xiang L. X‐ray‐induced acoustic computed tomography for 3D breast imaging: a simulation study. Med Phys. 2018; 45: 1662 – 1672.
dc.identifier.citedreferenceBell AG. On the production and reproduction of sound by light. Am J Sci. 1880; 20: 305 – 324.
dc.identifier.citedreferenceBowen T. Radiation‐induced thermoacoustic soft tissue imaging. In: IEEE Ultrasonics Symposium Proceedings; 1981: 817 – 822.
dc.identifier.citedreferenceWang L, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012; 335: 1458 – 1462.
dc.identifier.citedreferenceZackrisson S, van de Ven SMWY, Gambhir SS. Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res. 2014; 74: 979 – 1004.
dc.identifier.citedreferenceGao F, Feng X, Zheng Y. Advanced photoacoustic and thermoacoustic sensing and imaging beyond pulsed absorption contrast. J Opt. 2016; 18: 074006.
dc.identifier.citedreferenceKron T, Lehmann J, Greer PB. Dosimetry of ionising radiation in modern radiation oncology. Phys Med Biol. 2016; 61: R167 – R205.
dc.identifier.citedreferenceKawrakow I. Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys. 2000; 27: 485 – 498.
dc.identifier.citedreferenceAgostinelli S, Allison J, Amako K, et al. GEANT4 – a simulation toolkit. Nucl Instrum Methods Phys Res A. 2003; 506: 250 – 303.
dc.identifier.citedreferenceForster R, and Godfrey T. MCNP – a general Monte Carlo code for neutron and photon transport. Monte Carlo Methods Appl. 1985; 240: 33 – 55.
dc.identifier.citedreferenceFerrari A, Sala PR, Fasso A, Ranft J. FLUKA: a multi‐particle transport code. Tech. Rep. CERN‐2005‐10, Geneva; 2005.
dc.identifier.citedreferenceBaro J, Sempau J, Fernandez‐Varea J, Salvat F. PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Methods Phys Res B. 1995; 100: 31 – 46.
dc.identifier.citedreferenceRoss CK, Klassen NV, Shortt K, Smith G. A direct comparison of water calorimetry and Fricke dosimetry. Phys Med Biol. 1989; 34: 23 – 42.
dc.identifier.citedreferenceCox BT, Laufer JG, Beard PC. The challenges for quantitative photoacoustic imaging. Proc SPIE. 2009; 7177: 717713 – 717713–9.
dc.identifier.citedreferenceZhou Y, Yao J, Wang LV. Tutorial on photoacoustic tomography. J Biomed Opt. 2016; 21: 061007.
dc.identifier.citedreferenceHickling S, Leger P, El Naqa I.. On the detectability of acoustic waves induced following irradiation by a radiotherapy linear accelerator. IEEE Trans Ultrason Ferroelectr Freq Control. 2016; 63: 683 – 690.
dc.identifier.citedreferenceLehrack S, Assmann W, Bertrand D, et al. Submillimeter ionoacoustic range determination for protons in water at a clinical synchrocyclotron. Phys Med Biol. 2017; 62: 19 – 30.
dc.identifier.citedreferenceKruger R, Liu P, Fang Y, Appledorn C. Photoacoustic ultrasound (PAUS)‐ Reconstruction tomography. Med Phys. 1995; 22: 1605 – 1609.
dc.identifier.citedreferenceXu M, Wang L. Universal back‐projection algorithm for photoacoustic computed tomography. Phys Rev E. 2005; 71: 016706.
dc.identifier.citedreferenceHuang D‐H, Liao C‐K, Wei C‐W, Li P‐C. Simulations of optoacoustic wave propagation in light‐absorbing media using a finite‐difference time‐domain method. J Acoust Soc Am. 2005; 117: 2795 – 2801.
dc.identifier.citedreferenceMast TD, Souriau LP, Liu DL, Tabei M, Nachman AI, Waag RC. A k‐space method for large‐scale models of wave propagation in tissue. IEEE Trans Ultrason Ferroelectr Freq Control. 2001; 48: 341 – 354.
dc.identifier.citedreferenceTreeby BE, Cox BT. k‐Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J Biomed Opt. 2010; 15: 021314.
dc.identifier.citedreferenceTreeby BE, Cox BT. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J Acoust Soc Am. 2010; 127: 2741 – 2748.
dc.identifier.citedreferenceSulak L, Armstrong T, Baranger H, et al. Experimental studies of the acoustic signature of proton beams traversing fluid media. Nucl Instrum Methods. 1979; 161: 203 – 217.
dc.identifier.citedreferenceSachse W, Kim KY. Observation of x‐ray generated ultrasound. In: IEEE Ultrasonics Symposium Proceedings; 1983: 677 – 680.
dc.identifier.citedreferenceMascarenhas S, Vargas H, Cesar CL. A photoacoustical radiation dosimeter. Med Phys. 1984; 11: 73 – 74.
dc.identifier.citedreferenceBowen T, Connor WG, Nasoni RL, et al. Observation of acoustic signals from a phantom in an 18 MeV electron beam for cancer therapy. In: Acoustical Imaging. New York: Plenum Press; 1984: 429 – 434.
dc.identifier.citedreferenceBowen T, Chen CX, Liew SC, Lutz WR, Nasoni RL. Observation of ultrasonic emission from edges of therapeutic x‐ray beams. Phys Med Biol. 1991; 36: 537 – 539.
dc.identifier.citedreferenceTada J, Hayakawa Y, Hosono K, Inada T. Time resolved properties of acoustic pulses generated in water and in soft tissue by pulsed proton beam irradiation – a possibility of doses distribution monitoring in proton radiation therapy. Med Phys. 1991; 18: 1100 – 1104.
dc.identifier.citedreferenceHayakawa Y, Tada J, Arai N, et al. Acoustic pulse generated in a patient during treatment by pulsed proton radiation beam. Radiat Oncol Invest. 1995; 3: 42 – 45.
dc.identifier.citedreferenceXiang L, Han B, Carpenter C, Pratx G, Kuang Y, Xing L. X‐ray acoustic computed tomography with pulsed x‐ray beam from a medical linear accelerator. Med Phys. 2013; 40: 010701.
dc.identifier.citedreferenceStantz K, Alsanea F, Moskvin V. Use of radiation‐induced ultrasound to image proton dosimetry. Med Phys. 2013; 40: 546.
dc.identifier.citedreferenceInternational Atomic Energy Agency. Development of procedures for in vivo dosimetry in radiotherapy. IAEA Human Health Reports. Vol. 8; 2013.
dc.identifier.citedreferenceKim J, Park E‐Y, Jung Y, et al. X‐ray acoustic‐based dosimetry using a focused ultrasound transducer and a medical linear accelerator. IEEE Trans Radiat Plasma Med Sci. 2017; 1: 534 – 540.
dc.identifier.citedreferenceDiao X, Zhu J, Li W, et al. Broadband detection of dynamic acoustic emission process induced by 6 MV therapeutic x‐ray beam from a clinical linear accelerator. In: IEEE International Ultrasonics Symposium Proceedings; 2015: 1 – 4.
dc.identifier.citedreferenceSampaio DRT, Uliana JH, Antonio AO, Pavoni JF, Pavan TZ. X‐ray acoustic imaging for external beam radiation therapy dosimetry using a commercial ultrasound scanner. In: IEEE International Ultrasonics Symposium Proceedings; 2015: 1 – 4.
dc.identifier.citedreferenceHickling S, Lei H, Hobson M, Leger P, Wang X, El Naqa I. Experimental evaluation of x‐ray acoustic computed tomography for radiotherapy dosimetry applications. Med Phys. 2017; 44: 608 – 617.
dc.identifier.citedreferenceHickling S, Hobson M, El Naqa I. Characterization of x‐ray acoustic computed tomography for applications in radiotherapy dosimetry. IEEE Trans Radiat Plasma Med Sci. 2018; 1.
dc.identifier.citedreferenceHickling S, Hobson M, El Naqa I. Feasibility of x‐ray acoustic computed tomography as a tool for noninvasive volumetric in vivo dosimetry. Int J Radiat Oncol Biol Phys. 2014; 90: S843.
dc.identifier.citedreferenceHickling S, Hobson M, Renaud M, El Naqa I. In vivo detection of radiation‐induced acoustic waves for treatment delivery verification: a simulation study. Med Phys. 2017; 44: 2760.
dc.identifier.citedreferencePaltauf G, Viator JA, Prahl SA, Jacques SL. Iterative reconstruction algorithm for optoacoustic imaging. J Acoust Soc Am. 2002; 112: 1536 – 1544.
dc.identifier.citedreferenceDing L, Deán‐Ben XL, Lutzweiler C, Razansky D, Ntziachristos V. Image reconstruction in cross‐sectional optoacoustic tomography based on non‐negative constrained model‐based inversion. In: Proc SPIE. 2015; 9539: 953919 – 953924.
dc.identifier.citedreferenceMijnheer B, Beddar S, Izewska J, Reft C. In vivo dosimetry in external beam radiotherapy. Med Phys. 2013; 40: 070903.
dc.identifier.citedreferenceO’Shea T, Bamber J, Fontanarosa D, van der Meer S, Verhaegen F, Harris E. Review of ultrasound image guidance in external beam radiotherapy part II: intra‐fraction motion management and novel applications. Phys Med Biol. 2016; 61: R90 – R137.
dc.identifier.citedreferenceAzuma T, Ogihara M, Kubota J, Sasaki A, Umemura SI, Furuhata H. Dual frequency ultrasound imaging and therapeutic bilaminar array using frequency selective isolation layer. IEEE Trans Ultrason Ferroelectr Freq Control. 2010; 57: 1211 – 1224.
dc.identifier.citedreferenceMartin K, Lindsey B, Ma J, et al. Dual frequency piezoelectric transducers for contrast enhanced ultrasound imaging. Sensors. 2014; 14: 20825 – 20842.
dc.identifier.citedreferenceBazalova‐Carter M, Schlosser J, Chen J, Hristov D. Monte Carlo modeling of ultrasound probes for image guided radiotherapy. Med Phys. 2015; 42: 5745 – 5756.
dc.identifier.citedreferenceSchlosser J, Hristov D. Radiolucent 4D ultrasound imaging: system design and application to radiotherapy guidance. IEEE Trans Med Imaging. 2016; 35: 2292 – 2300.
dc.identifier.citedreferenceTrivedi A, Ashikaga T, Hard D, et al. Development of 3‐dimensional transperineal ultrasound for image guided radiation therapy of the prostate: early evaluations of feasibility and use for inter‐ and intrafractional prostate localization. Pract Radiat Oncol. 2016; 7: e27 – e33.
dc.identifier.citedreferenceSchlosser J, Gong RH, Bruder R, et al. Robotic intrafractional US guidance for liver SABR: system design, beam avoidance, and clinical imaging. Med Phys. 2016; 43: 5951 – 5963.
dc.identifier.citedreferenceOmari EA, Erickson B, Ehlers C, et al. Preliminary results on the feasibility of using ultrasound to monitor intrafractional motion during radiation therapy for pancreatic cancer. Med Phys. 2016; 43: 5252 – 5260.
dc.identifier.citedreferenceBauer J, Sommerer F, Mairani A, et al. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy. Phys Med Biol. 2014; 59: 4635 – 4659.
dc.identifier.citedreferenceVerburg JM, Grassberger C, Dowdell S, Schuemann J, Seco J, Paganetti H. Automated Monte Carlo simulation of proton therapy treatment plans. Technol Cancer Res Treat. 2016; 15: NP35 – NP46.
dc.identifier.citedreferencePaganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys Med Biol. 2012; 57: 99 – 117.
dc.identifier.citedreferenceParodi K. Vision 20/20: positron emission tomography in radiation therapy planning, delivery, and monitoring. Med Phys. 2015; 42: 7153 – 7168.
dc.identifier.citedreferenceKrimmer J, Dauvergne D, Létang JM, Testa É. Prompt‐gamma monitoring in hadrontherapy: a review. Nucl Instrum Methods Phys Res A. 2018; 878: 58 – 73.
dc.identifier.citedreferencePedroni E, Bacher R, Blattmann H, et al. The 200‐MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization. Med Phys. 1995; 22: 37 – 53.
dc.identifier.citedreferenceHenrotin S, Abs M, Forton E, et al. Commissioning and testing of the first Iba S2C2. In: Proceedings of Cyclotrons 2016; 2016: 178 – 180.
dc.identifier.citedreferenceAlsanea F, Moskvin V, Stantz KM. Feasibility of RACT for 3D dose measurement and range verification in a water phantom. Med Phys. 2015; 42: 937 – 946.
dc.identifier.citedreferenceAlbul VI, Bychkov VB, Vasil’ev S, et al. Acoustic field generated by a beam of protons stopping in a water medium. Acoust Phys. 2005; 51: 33 – 37.
dc.identifier.citedreferenceJones KC, Witztum A, Sehgal CM, Avery S. Proton beam characterization by proton‐induced acoustic emission: simulation studies. Phys Med Biol. 2014; 59: 6549 – 6563.
dc.identifier.citedreferenceAhmad M, Xiang L, Yousefi S. Xing L. Detection threshold of proton‐acoustic range verification. Med Phys. 2015; 42: 5735 – 5744.
dc.identifier.citedreferenceJones KC, Seghal CM, Avery S. How proton pulse characteristics influence protoacoustic determination of proton‐beam range: simulation studies. Phys Med Biol. 2016; 61: 2213 – 2242.
dc.identifier.citedreferenceInternational Commission on Radiation Units and Measurements. Prescribing, recording, and reporting proton‐beam therapy (ICRU Report 78). tech. rep., ICRU, Bethesda; 2007.
dc.identifier.citedreferenceAssmann W, Kellnberger S, Reinhardt S. et al. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy. Med Phys. 2015; 42: 567 – 574.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.