Show simple item record

Co‐culture of adipose‐derived stem cells and chondrocytes on three‐dimensionally printed bioscaffolds for craniofacial cartilage engineering

dc.contributor.authorMorrison, Robert J.
dc.contributor.authorNasser, Hassan B.
dc.contributor.authorKashlan, Khaled N.
dc.contributor.authorZopf, David A.
dc.contributor.authorMilner, Derek J.
dc.contributor.authorFlanangan, Colleen L.
dc.contributor.authorWheeler, Matthew B.
dc.contributor.authorGreen, Glenn E.
dc.contributor.authorHollister, Scott J.
dc.date.accessioned2018-08-13T18:48:27Z
dc.date.available2019-09-04T20:15:38Zen
dc.date.issued2018-07
dc.identifier.citationMorrison, Robert J.; Nasser, Hassan B.; Kashlan, Khaled N.; Zopf, David A.; Milner, Derek J.; Flanangan, Colleen L.; Wheeler, Matthew B.; Green, Glenn E.; Hollister, Scott J. (2018). "Co‐culture of adipose‐derived stem cells and chondrocytes on three‐dimensionally printed bioscaffolds for craniofacial cartilage engineering." The Laryngoscope 128(7): E251-E257.
dc.identifier.issn0023-852X
dc.identifier.issn1531-4995
dc.identifier.urihttps://hdl.handle.net/2027.42/145213
dc.publisherWiley Periodicals, Inc.
dc.subject.othertissue engineering
dc.subject.othercraniofacial reconstruction
dc.subject.otherAuricular reconstruction
dc.subject.othermicrotia
dc.subject.otheranotia
dc.subject.othernasal reconstruction
dc.subject.othercomputer‐aided design
dc.subject.othercomputer‐aided manufacturing
dc.subject.otherCAD/CAM
dc.subject.otherthree‐dimensional printing
dc.titleCo‐culture of adipose‐derived stem cells and chondrocytes on three‐dimensionally printed bioscaffolds for craniofacial cartilage engineering
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOtolaryngology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145213/1/lary27200.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145213/2/lary27200_am.pdf
dc.identifier.doi10.1002/lary.27200
dc.identifier.sourceThe Laryngoscope
dc.identifier.citedreferenceKusuhara H, Isogai N, Enjo M, et al. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regen 2009; 17: 136 – 146.
dc.identifier.citedreferenceZopf DA, Mitsak AG, Flanagan CL, Wheeler MB, Green GE, Hollister SJ. Computer aided‐designed, 3‐dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Otolaryngol Head Neck Surg 2015; 152: 57 – 62.
dc.identifier.citedreferenceHollister SJ, Levy RA, Chu TMJ, et al. An image‐based approach to design and manufacture craniofacial scaffolds. Int J Oral Maxillofac Surg 2000; 29: 67 – 71.
dc.identifier.citedreferenceHollister SJ, Maddox RD, Taboas JM, et al. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 2002; 23: 4095 – 4103.
dc.identifier.citedreferenceLin CY, Kikuchi N, Hollister SJ. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 2004; 37: 623 – 636.
dc.identifier.citedreferenceHollister SJ, Lin CY, Saito E, et al. Engineering craniofacial scaffolds. Orthod Craniofac Res 2002; 8: 162 – 173.
dc.identifier.citedreferenceHollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005; 4: 518 – 524.
dc.identifier.citedreferenceHollister SJ, Lin CY. Computational design of tissue engineering scaffolds. Comput Methods Appl Mech Eng 2005; 196: 2991 – 2998.
dc.identifier.citedreferenceKang H, Lin CY, Hollister SJ. Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity. Struct Multidiscipl Optim 2010; 42: 633 – 644.
dc.identifier.citedreferencePartee B, Hollister SJ, Das S. Selective laser sintering process optimization for layered manufacturing of CAPA 6501 polycaprolactone bone tissue engineering scaffolds. J Manuf Sci Eng 2006; 128: 531 – 540.
dc.identifier.citedreferenceKim D, Monaco E, Maki A, et al. Morphologic and transcriptomic comparison of adipose‐ and bone‐marrow‐derived porcine stem cells cultured in alginate hydrogels. Cell Tissue Res 2010; 341: 359 – 370.
dc.identifier.citedreferenceHerzog KK, Milner DJ, Johnson SJ, Wheeler MB. Chondrogenic potential of porcine adipose‐derived stem cells, chondrocytes, periosteal cells, and fibroblasts in a pellet culture system. Reprod Fertil Dev 2014; 27: 253.
dc.identifier.citedreferenceLiao E, Yaszemski M, Krebsbach PH, Hollister SJ. Tissue engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene) fumarate scaffolds. Tissue Eng 2007; 13: 537 – 550.
dc.identifier.citedreferenceZhou LI, Pomerantseva EK, Bassett CM, et al. Engineering ear constructs with a composite scaffold to maintain dimensions. Tissue Eng Part A 2011; 17: 1573 – 1581.
dc.identifier.citedreferenceXue JB, Feng R, Zheng Y, et al. Engineering earshaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials 2013; 34: 2624 – 2631.
dc.identifier.citedreferenceRuszymah BH, Chua KH, Mazlyzam AL, Aminuddin BS. Formation of tissue engineered composite construct of cartilage and skin using high density polyethylene as inner scaffold in the shape of human helix. Int J Pediatr Otorhinolaryngol 2011; 75: 805 – 810.
dc.identifier.citedreferenceYanaga H, Imai K, Fujimoto T, Yanaga K. Generating ears from cultured autologous auricular chondrocytes by using two‐stage implantation in treatment of microtia. Plast Reconstr Surg 2009; 124: 817 – 825.
dc.identifier.citedreferenceVon Der Mark K, Gauss V, Von Der Mark H, Mueller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 1977; 267: 531 – 532.
dc.identifier.citedreferenceTsutsumi S, Shimazu A, Miyazaki K, et al. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 2011; 288: 413 – 419.
dc.identifier.citedreferenceMartin I, Shastri VP, Padera RF, et al. Selective differentiation of mammalian bone marrow stromal cells cultured on three‐dimensional polymer foams. J Biomed Mater Res 2001; 55: 229 – 235.
dc.identifier.citedreferenceHwang NS, Elisseeff J. Application of stem cells for articular cartilage regeneration. J Knee Surg 2009; 22: 60
dc.identifier.citedreferenceHickok NJ, Haas AR, Tuan RS. Regulation of chondrocyte differentiation and maturation. Microsc Res Tech 1998; 43: 174 – 190.
dc.identifier.citedreferenceMerceron C, Vinatier C, Portron S, et al. Differential effects of hypoxia on osteochondrogenic potential of human adipose‐derived stem cells. Am J Physiol Cell Physiol 2010; 298: C355 – C364.
dc.identifier.citedreferenceLiu X, Sun H, Yan D, et al. In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials 2010; 31: 9406 – 9414.
dc.identifier.citedreferenceKeller B, Yang T, Munivez E, et al. Interaction of TGFbeta and BMP signaling pathways during chondrogenesis. PLoS One 2011; 6: 316421.
dc.identifier.citedreferenceKim JS, Ryoo ZY, Chun JS. Cytokine‐like (Cytl1) regulates the chondrogenesis of mesenchymal cells. J Biol Chem 2007; 282: 29359 – 29367.
dc.identifier.citedreferenceChoi YS, Lim SM, Shin HC, et al. Chondrogenesis of human periostium‐derived progenitor cells in atelocollagen. Biotechnol Lett 2007; 29: 323 – 329.
dc.identifier.citedreferenceMo XT, Guo SC, Xie HQ, et al. Variations in the ratios of co‐cultured mesenchymal stem cells and chondrocytes regulate the expression of cartilaginous and osseous phenotype in alginate constructs. Bone 2009; 45: 42 – 51.
dc.identifier.citedreferenceZopf DA, Morrison RJ, Flanagan CL, Mitsak AG, Green GE, Hollister SJ. Surface area effects on chondrogenic potential of 3‐dimensionally printed porous tissue bioscaffolds for auricular reconstruction. In Proceedings of Combined Otolaryngology Spring Meetings, The Triological Society, American Society of Pediatric Otolaryngology Section, Las Vegas, NV, May 16, 2014.
dc.identifier.citedreferenceGoh BS, Che Omar SN, Ubaidah MA, Saim L, Sulaiman S, Chua KH. Chondrogenesis of human adipose derived stem cells for future microtia repair using co‐culture technique. Acta Otolaryngol 2017; 137: 432 – 441.
dc.identifier.citedreferenceStrioga M, Viswanathan S, Darinskas A, et al. Same or not the same? Comparison of adipose tissue‐derived versus bone marrow‐derived mesenchymal stem and stromal cells. Stem Cells Dev 2012; 21: 2724 – 2752.
dc.identifier.citedreferenceBichara DA, O’Sullivan NA, Pomerantseva I, et al. The tissue‐engineered auricle: past, present, and future. Tissue Eng Part B Rev 2012; 18: 51 – 61.
dc.identifier.citedreferenceBauer B. Reconstruction of microtia. Plast Reconstr Surg 2009; 124: 14e – 26e.
dc.identifier.citedreferenceWilkes GH, Wong J, Guilfoyle R. Microtia reconstruction. Plast Reconstr Surg 2014; 134: 464 – 479.
dc.identifier.citedreferenceRomo T 3rd, Presti PM, Yalamanchili HR. Medpor alternative for microtia repair. Facial Plast Surg Clin North Am 2006; 14: 129 – 136, vi.
dc.identifier.citedreferenceWellisz T. Clinical experience with the Medpor porous polyethylene implant. Aesthetic Plast Surg 1993; 17: 339 – 344.
dc.identifier.citedreferenceIsogai N, Kusuhara H, Ikada Y, et al. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng 2006; 12: 691 – 703.
dc.identifier.citedreferencevan Osch GJ, van der Veen SW, Verwoerd‐Verhoef HL. In vitro redifferentiation of culture‐expanded rabbit and human auricular chondrocytes for cartilage reconstruction. Plast Reconstr Surg 2001; 107: 433 – 440.
dc.identifier.citedreferenceVacanti CA, Cima LG, Ratkowski D, Upton J, Vacanti JP. Tissue engineered growth of new cartilage in the shape of a human ear using synthetic‐polymers seeded with chondrocytes. Mater Res Soc Symp Proc 1991; 252: 374.
dc.identifier.citedreferenceShieh SJ, Terada S, Vacanti JP. Tissue engineering auricular reconstruction: In vitro and in vivo studies. Biomaterials 2004; 25: 1545 – 1557.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.