Show simple item record

CTC1‐STN1 coordinates G‐ and C‐strand synthesis to regulate telomere length

dc.contributor.authorGu, Peili
dc.contributor.authorJia, Shuting
dc.contributor.authorTakasugi, Taylor
dc.contributor.authorSmith, Eric
dc.contributor.authorNandakumar, Jayakrishnan
dc.contributor.authorHendrickson, Eric
dc.contributor.authorChang, Sandy
dc.date.accessioned2018-08-13T18:49:07Z
dc.date.available2019-10-01T16:02:10Zen
dc.date.issued2018-08
dc.identifier.citationGu, Peili; Jia, Shuting; Takasugi, Taylor; Smith, Eric; Nandakumar, Jayakrishnan; Hendrickson, Eric; Chang, Sandy (2018). "CTC1‐STN1 coordinates G‐ and C‐strand synthesis to regulate telomere length." Aging Cell 17(4): n/a-n/a.
dc.identifier.issn1474-9718
dc.identifier.issn1474-9726
dc.identifier.urihttps://hdl.handle.net/2027.42/145241
dc.publisherWiley Periodicals, Inc.
dc.subject.otherDNA repair
dc.subject.othertelomerase
dc.subject.othertelomere
dc.subject.otherstem cell aging
dc.titleCTC1‐STN1 coordinates G‐ and C‐strand synthesis to regulate telomere length
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145241/1/acel12783.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145241/2/acel12783_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145241/3/acel12783-sup-0001-FigS1-S4.pdf
dc.identifier.doi10.1111/acel.12783
dc.identifier.sourceAging Cell
dc.identifier.citedreferenceNandakumar, J., & Cech, T. R. ( 2012 ). DNA‐induced dimerization of the single‐stranded DNA binding telomeric protein Pot1 from Schizosaccharomyces pombe. Nucleic Acids Research, 40, 235 – 244. https://doi.org/10.1093/nar/gkr721
dc.identifier.citedreferenceHu, C., Rai, R., Huang, C., Broton, C., Long, J., Xu, Y., … Chen, Y. ( 2017 ). Structural and functional analyses of the mammalian TIN2‐TPP1‐TRF2 telomeric complex. Cell Research, 27, 1485 – 1502. https://doi.org/10.1038/cr.2017.144
dc.identifier.citedreferenceHuang, C., Dai, X., & Chai, W. ( 2012 ). Human Stn1 protects telomere integrity by promoting efficient lagging‐strand synthesis at telomeres and mediating C‐strand fill‐in. Cell Research, 22, 1681 – 1695. https://doi.org/10.1038/cr.2012.132
dc.identifier.citedreferenceKan, Y., Batada, N. N., & Hendrickson, E. A. ( 2017 ). Human somatic cells deficient for RAD52 are impaired for viral integration and compromised for most aspects of homology‐directed repair. DNA Repair (Amst), 55, 64 – 75. https://doi.org/10.1016/j.dnarep.2017.04.006
dc.identifier.citedreferenceKasbek, C., Wang, F., & Price, C. M. ( 2013 ). Human TEN1 maintains telomere integrity and functions in genome‐wide replication restart. Journal of Biological Chemistry, 288, 30139 – 30150. https://doi.org/10.1074/jbc.M113.493478
dc.identifier.citedreferenceKeller, R. B., Gagne, K. E., Usmani, G. N., Asdourian, G. K., Williams, D. A., Hofmann, I., & Agarwal, S. ( 2012 ). CTC1 Mutations in a patient with dyskeratosis congenita. Pediatric Blood & Cancer, 59, 311 – 314. https://doi.org/10.1002/pbc.24193
dc.identifier.citedreferenceKocak H., Ballew B. J., Bisht K., Eggebeen R., Hicks B. D., Suman S., … Savage S. A. ( 2014 ) Hoyeraal‐Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1. Genes & Development 28, 2090 – 2102. https://doi.org/10.1101/gad.248567.114
dc.identifier.citedreferenceMiyake, Y., Nakamura, M., Nabetani, A., Shimamura, S., Tamura, M., Yonehara, S., … Ishikawa, F. ( 2009 ). RPA‐like mammalian Ctc1‐Stn1‐Ten1 complex binds to single‐stranded DNA and protects telomeres independently of the Pot1 pathway. Molecular Cell, 36, 193 – 206. https://doi.org/10.1016/j.molcel.2009.08.009
dc.identifier.citedreferenceNakaoka, H., Nishiyama, A., Saito, M., & Ishikawa, F. ( 2012 ). Xenopus laevis Ctc1‐Stn1‐Ten1 (xCST) protein complex is involved in priming DNA synthesis on single‐stranded DNA template in Xenopus egg extract. Journal of Biological Chemistry, 287, 619 – 627. https://doi.org/10.1074/jbc.M111.263723
dc.identifier.citedreferencePalm, W., & de Lange, T. ( 2008 ). How shelterin protects mammalian telomeres. Annual Review of Genetics, 42, 301 – 334. https://doi.org/10.1146/annurev.genet.41.110306.130350
dc.identifier.citedreferencePolvi, A., Linnankivi, T., Kivela, T., Herva, R., Keating, J. P., Makitie, O., … Lehesjoki, A. E. ( 2012 ). Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts. American Journal of Human Genetics, 90, 540 – 549. https://doi.org/10.1016/j.ajhg.2012.02.002
dc.identifier.citedreferenceQi, H., & Zakian, V. A. ( 2000 ). The Saccharomyces telomere‐binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase‐associated est1 protein. Genes & Development, 14, 1777 – 1788.
dc.identifier.citedreferenceRai, R., Chen, Y., Lei, M., & Chang, S. ( 2016 ). TRF2‐RAP1 is required to protect telomeres from engaging in homologous recombination‐mediated deletions and fusions. Nature Communications, 7, 10881. https://doi.org/10.1038/ncomms10881
dc.identifier.citedreferenceRai, R., Hu, C., Broton, C., Chen, Y., Lei, M., & Chang, S. ( 2017 ). NBS1 phosphorylation status dictates repair choice of dysfunctional telomeres. Molecular Cell, 65, 801 – 817. e804. https://doi.org/10.1016/j.molcel.2017.01.016
dc.identifier.citedreferenceStewart, J. A., Wang, F., Chaiken, M. F., Kasbek, C., Chastain, P. D. 2nd, Wright, W. E., & Price, C. M. ( 2012 ). Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO Journal, 31, 3537 – 3549. https://doi.org/10.1038/emboj.2012.215
dc.identifier.citedreferenceSurovtseva, Y. V., Churikov, D., Boltz, K. A., Song, X., Lamb, J. C., Warrington, R., … Shippen, D. E. ( 2009 ). Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Molecular Cell, 36, 207 – 218. https://doi.org/10.1016/j.molcel.2009.09.017
dc.identifier.citedreferenceTakai, H., Jenkinson, E., Kabir, S., Babul‐Hirji, R., Najm‐Tehrani, N., Chitayat, D. A., … de Lange, T. ( 2016 ). A POT1 mutation implicates defective telomere end fill‐in and telomere truncations in Coats plus. Genes & Development, 30, 812 – 826. https://doi.org/10.1101/gad.276873.115
dc.identifier.citedreferenceWalne, A. J., Bhagat, T., Kirwan, M., Gitiaux, C., Desguerre, I., Leonard, N., … Dokal, I. S. ( 2013 ). Mutations in the telomere capping complex in bone marrow failure and related syndromes. Haematologica, 98, 334 – 338. https://doi.org/10.3324/haematol.2012.071068
dc.identifier.citedreferenceWan, M., Qin, J., Songyang, Z., & Liu, D. ( 2009 ). OB fold‐containing protein 1 (OBFC1), a human homolog of yeast Stn1, associates with TPP1 and is implicated in telomere length regulation. Journal of Biological Chemistry, 284, 26725 – 26731. https://doi.org/10.1074/jbc.M109.021105
dc.identifier.citedreferenceWang, H., Nora, G. J., Ghodke, H., & Opresko, P. L. ( 2011 ). Single molecule studies of physiologically relevant telomeric tails reveal POT1 mechanism for promoting G‐quadruplex unfolding. Journal of Biological Chemistry, 286, 7479 – 7489. https://doi.org/10.1074/jbc.M110.205641
dc.identifier.citedreferenceWang, F., Stewart, J. A., Kasbek, C., Zhao, Y., Wright, W. E., & Price, C. M. ( 2012 ). Human CST has independent functions during telomere duplex replication and C‐strand fill‐in. Cell Reports, 2, 1096 – 1103. https://doi.org/10.1016/j.celrep.2012.10.007
dc.identifier.citedreferenceWu, P., Takai, H., & de Lange, T. ( 2012 ). Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill‐in by POT1b‐associated CST. Cell, 150, 39 – 52. https://doi.org/10.1016/j.cell.2012.05.026
dc.identifier.citedreferenceZhong, F. L., Batista, L. F., Freund, A., Pech, M. F., Venteicher, A. S., & Artandi, S. E. ( 2012 ). TPP1 OB‐fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell, 150, 481 – 494. https://doi.org/10.1016/j.cell.2012.07.012
dc.identifier.citedreferenceAdams, A. K., & Holm, C. ( 1996 ). Specific DNA replication mutations affect telomere length in Saccharomyces cerevisiae. Molecular and Cellular Biology, 16, 4614 – 4620. https://doi.org/10.1128/MCB.16.9.4614
dc.identifier.citedreferenceAnderson, B. H., Kasher, P. R., Mayer, J., Szynkiewicz, M., Rice, G. I., & Crow, Y. J. ( 2012 ). Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nature Genetics, 44, 338 – 342. https://doi.org/10.1038/ng.1084
dc.identifier.citedreferenceArmanios, M., & Blackburn, E. H. ( 2012 ). The telomere syndromes. Nature Reviews Genetics, 13, 693 – 704. https://doi.org/10.1038/nrg3246
dc.identifier.citedreferenceBhattacharjee, A., Wang, Y., Diao, J., & Price, C. M. ( 2017 ). Dynamic DNA binding, junction recognition and G4 melting activity underlie the telomeric and genome‐wide roles of human CST. Nucleic Acids Research, 45, 12311 – 12324. https://doi.org/10.1093/nar/gkx878
dc.identifier.citedreferenceBisht, K., Smith, E. M., Tesmer, V. M., & Nandakumar, J. ( 2016 ). Structural and functional consequences of a disease mutation in the telomere protein TPP1. Proceedings of the National Academy of Sciences of the United States of America, 113, 13021 – 13026. https://doi.org/10.1073/pnas.1605685113
dc.identifier.citedreferenceBlasco, M. A., Lee, H. W., Hande, M. P., Samper, E., Lansdorp, P. M., DePinho, R. A., & Greider, C. W. ( 1997 ). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell, 91, 25 – 34. https://doi.org/10.1016/S0092-8674(01)80006-4
dc.identifier.citedreferenceCasteel, D. E., Zhuang, S., Zeng, Y., Perrino, F. W., Boss, G. R., Goulian, M., & Pilz, R. B. ( 2009 ). A DNA polymerase‐{alpha}{middle dot}primase cofactor with homology to replication protein A‐32 regulates DNA replication in mammalian cells. Journal of Biological Chemistry, 284, 5807 – 5818. https://doi.org/10.1074/jbc.M807593200
dc.identifier.citedreferenceChastain, M., Zhou, Q., Shiva, O., Fadri‐Moskwik, M., Whitmore, L., Jia, P., … Chai, W. ( 2016 ). Human CST facilitates genome‐wide RAD51 recruitment to GC‐rich repetitive sequences in response to replication stress. Cell Reports, 16, 1300 – 1314. https://doi.org/10.1016/j.celrep.2016.06.077
dc.identifier.citedreferenceChen, L. Y., Majerska, J., & Lingner, J. ( 2013 ). Molecular basis of telomere syndrome caused by CTC1 mutations. Genes & Development, 27, 2099 – 2108. https://doi.org/10.1101/gad.222893.113
dc.identifier.citedreferenceChen, L. Y., Redon, S., & Lingner, J. ( 2012 ). The human CST complex is a terminator of telomerase activity. Nature, 488, 540 – 544. https://doi.org/10.1038/nature11269
dc.identifier.citedreferenceCrabbe, L., Verdun, R. E., Haggblom, C. I., & Karlseder, J. ( 2004 ). Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science, 306, 1951 – 1953. https://doi.org/10.1126/science.1103619
dc.identifier.citedreferenceDenchi, E. L., & de Lange, T. ( 2007 ). Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature, 448, 1068 – 1071. https://doi.org/10.1038/nature06065
dc.identifier.citedreferenceFeng, X., Hsu, S. J., Kasbek, C., Chaiken, M., & Price, C. M. ( 2017 ). CTC1‐mediated C‐strand fill‐in is an essential step in telomere length maintenance. Nucleic Acids Research, 45, 4281 – 4293. https://doi.org/10.1093/nar/gkx125
dc.identifier.citedreferenceGanduri, S., & Lue, N. F. ( 2017 ). STN1‐POLA2 interaction provides a basis for primase‐pol alpha stimulation by human STN1. Nucleic Acids Research, 45, 9455 – 9466. https://doi.org/10.1093/nar/gkx621
dc.identifier.citedreferenceGreider, C. W. ( 2016 ). Regulating telomere length from the inside out: the replication fork model. Genes & Development, 30, 1483 – 1491. https://doi.org/10.1101/gad.280578.116
dc.identifier.citedreferenceGrossi, S., Puglisi, A., Dmitriev, P. V., Lopes, M., & Shore, D. ( 2004 ). Pol12, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation. Genes & Development, 18, 992 – 1006. https://doi.org/10.1101/gad.300004
dc.identifier.citedreferenceGu, P., & Chang, S. ( 2013 ). Functional characterization of human CTC1 mutations reveals novel mechanisms responsible for the pathogenesis of the telomere disease Coats plus. Aging Cell, 12, 1100 – 1109. https://doi.org/10.1111/acel.12139
dc.identifier.citedreferenceGu, P., Min, J. N., Wang, Y., Huang, C., Peng, T., Chai, W., & Chang, S. ( 2012 ). CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion. EMBO Journal, 31, 2309 – 2321. https://doi.org/10.1038/emboj.2012.96
dc.identifier.citedreferenceGuo, X., Deng, Y., Lin, Y., Cosme‐Blanco, W., Chan, S., He, H., … Chang, S. ( 2007 ). Dysfunctional telomeres activate an ATM‐ATR‐dependent DNA damage response to suppress tumorigenesis. EMBO Journal, 26, 4709 – 4719. https://doi.org/10.1038/sj.emboj.7601893
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.