Show simple item record

First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAMâ Juno Images

dc.contributor.authorGrassi, D.
dc.contributor.authorAdriani, A.
dc.contributor.authorMoriconi, M. L.
dc.contributor.authorMura, A.
dc.contributor.authorTabataba‐vakili, F.
dc.contributor.authorIngersoll, A.
dc.contributor.authorOrton, G.
dc.contributor.authorHansen, C.
dc.contributor.authorAltieri, F.
dc.contributor.authorFilacchione, G.
dc.contributor.authorSindoni, G.
dc.contributor.authorDinelli, B. M.
dc.contributor.authorFabiano, F.
dc.contributor.authorBolton, S. J.
dc.contributor.authorLevin, S.
dc.contributor.authorAtreya, S. K.
dc.contributor.authorLunine, J. I.
dc.contributor.authorMomary, T.
dc.contributor.authorTosi, F.
dc.contributor.authorMigliorini, A.
dc.contributor.authorPiccioni, G.
dc.contributor.authorNoschese, R.
dc.contributor.authorCicchetti, A.
dc.contributor.authorPlainaki, C.
dc.contributor.authorOlivieri, A.
dc.contributor.authorTurrini, D.
dc.contributor.authorStefani, S.
dc.contributor.authorSordini, R.
dc.contributor.authorAmoroso, M.
dc.date.accessioned2018-08-13T18:49:13Z
dc.date.available2019-08-01T19:53:23Zen
dc.date.issued2018-06
dc.identifier.citationGrassi, D.; Adriani, A.; Moriconi, M. L.; Mura, A.; Tabataba‐vakili, F. ; Ingersoll, A.; Orton, G.; Hansen, C.; Altieri, F.; Filacchione, G.; Sindoni, G.; Dinelli, B. M.; Fabiano, F.; Bolton, S. J.; Levin, S.; Atreya, S. K.; Lunine, J. I.; Momary, T.; Tosi, F.; Migliorini, A.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Plainaki, C.; Olivieri, A.; Turrini, D.; Stefani, S.; Sordini, R.; Amoroso, M. (2018). "First Estimate of Wind Fields in the Jupiter Polar Regions From JIRAMâ Juno Images." Journal of Geophysical Research: Planets 123(6): 1511-1524.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/145242
dc.description.abstractWe present wind speeds at the ~ 1 bar level at both Jovian polar regions inferred from the 5â μm infrared images acquired by the Jupiter InfraRed Auroral Mapper (JIRAM) instrument on the National Aeronautics and Space Administration Juno spacecraft during its fourth periapsis (2 February 2017). We adopted the criterion of minimum mean absolute distortion (Gonzalez & Woods, 2008) to quantify the motion of cloud features between pairs of images. The associated random error on speed estimates is 12 m/s in the northern polar region and 9.8 m/s at the south. Assuming that polar cyclones described by Adriani et al. (2018, https://doi.org/10.1038/nature25491) are in rigid motion with respect to System III, tangential speeds in the interior of the vortices increase linearly with distance from the center. The annulus of maximum speed for the main circumpolar cyclones is located at approximatively 1,000 km from their centers, with peak cyclonic speeds typically between 80 and 110 m/s and ~50 m/s in at least two cases. Beyond the annulus of maximum speed, tangential speed decreases inversely with the distance from the center within the Southern Polar Cyclone and somewhat faster within the Northern Polar Cyclone. A few small areas of anticyclonic motions are also identified within both polar regions.Key PointsMain vortices on the Jupiter polar regions are cyclones, with peak wind speeds up to 110 m/sMaximum speeds are observed about 1,000 km from the centers of the vorticesSmaller and weaker anticyclonic areas are also identified
dc.publisherPrentice Hall
dc.publisherWiley Periodicals, Inc.
dc.subject.otherJupiter atmosphere
dc.subject.otherwind speeds
dc.subject.otherplanetary vortices
dc.titleFirst Estimate of Wind Fields in the Jupiter Polar Regions From JIRAMâ Juno Images
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145242/1/jgre20953.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145242/2/jgre20953_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145242/3/jgre20953-sup-0001-2018JE005555-SI.pdf
dc.identifier.doi10.1029/2018JE005555
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferenceJimenez, J., & Guegan, A. ( 2007 ). Spontaneous generation of vortex crystals from forced twoâ dimensional homogeneous turbulence. Physics of Fluids, 19 ( 8 ), 085103. https://doi.org/10.1063/1.2757713
dc.identifier.citedreferenceActon, C. H. ( 1996 ). Ancillary data services of NASA’s navigation and ancillary information facility. Planetary and Space Science, 44 ( 1 ), 65 â 70. https://doi.org/10.1016/0032â 0633(95)00107â 7
dc.identifier.citedreferenceActon, C. H., Bachman, N., Semenov, B., & Wright, E. ( 2017 ). A look toward the future in the handling of space science mission geometry. Planetary and Space Science, 150, 9 â 12. https://doi.org/10.1016/j.pss.2017.02.013
dc.identifier.citedreferenceAdriani, A., Filacchione, G., di Iorio, T., Turrini, D., Noschese, R., Cicchetti, A., et al. ( 2014 ). JIRAM, the Jovian infrared auroral mapper. Space Science Reviews, 213 ( 1â 4 ), 393 â 446. https://doi.org/10.1007/s11214â 014â 0094â y
dc.identifier.citedreferenceAdriani, A., Mura, A., Orton, G., Hansen, C., Altieri, F., Moriconi, M. L., et al. ( 2018 ). Geometric cyclonic patterns in Jovian polar regions. Nature, 555 ( 7695 ), 216 â 219. https://doi.org/10.1038/nature25491
dc.identifier.citedreferenceMayer, A. M. ( 1878 ). Floating magnets. Nature, 17 ( 442 ), 487 â 488.
dc.identifier.citedreferenceAsayâ Davis, X. S., Marcus, P. S., Wong, M. H., & de Pater, I. ( 2009 ). Jupiter’s shrinking great red spot and steady oval BA: Velocity measurements with the â advection corrected correlation image velocimetryâ automated cloudâ tracking method. Icarus, 203 ( 1 ), 164 â 188. https://doi.org/10.1016/j.icarus.2009.05.001
dc.identifier.citedreferenceAtreya, S. K., Wong, M. H., Owen, T. C., Mahaffy, P. R., Niemann, H. B., de Pater, I., et al. ( 1999 ). Comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin. Planetary and Space Science, 47 ( 10â 11 ), 1243 â 1262. https://doi.org/10.1016/S0032â 0633(99)00047â 1
dc.identifier.citedreferenceBaker, A. L., Baker, L. R., Beshore, E., Blenman, C., Castillo, N. D., Chen, Y. P., et al. ( 1975 ). The imaging photopolarimeter experiment on Pioneer 11. Science, 188 ( 4187 ), 468 â 472. https://doi.org/10.1126/science.188.4187.468
dc.identifier.citedreferenceBarradoâ Izagirre, N., Sánchezâ Lavega, A., Pérezâ Hoyos, S., & Hueso, R. ( 2008 ). Jupiter’s polar clouds and waves from Cassini and HST images: 1993â 2006. Icarus, 194 ( 1 ), 173 â 185. https://doi.org/10.1016/j.icarus.2007.08.025
dc.identifier.citedreferenceBolton, S. J., Adriani, A., Adumitroaie, V., Allison, M., Anderson, J., Atreya, S., et al. ( 2017 ). Jupiter’s interior and deep atmosphere: The initial poleâ toâ pole passes with the Juno spacecraft. Science, 356 ( 6340 ), 821 â 825. https://doi.org/10.1126/science.aal2108
dc.identifier.citedreferenceCampbell, L. J., & Ziff, R. M. ( 1979 ). Vortex patterns and energies in a rotating superfluid. Physical Review B, 20, 1886 â 1902. https://doi.org/10.1103/PhysRevB.20.1886
dc.identifier.citedreferenceChoi, D. S., Banfield, D., Gierasch, P. J., & Showman, A. P. ( 2007 ). Velocity and vorticity measurements of Jupiter’s great red spot using automated cloud feature tracking. Icarus, 188 ( 1 ), 35 â 46. https://doi.org/10.1016/j.icarus.2006.10.037
dc.identifier.citedreferenceDyudina, U. A., Ingersoll, A. P., Ewald, S. P., Vasavada, A. R., West, R. A., Baines, K. H., et al. ( 2009 ). Saturn’s south polar vortex compared to other large vortices in the Solar System. Icarus, 202 ( 1 ), 240 â 248. https://doi.org/10.1016/j.icarus.2009.02.014
dc.identifier.citedreferenceFine, K. S., Cass, A. C., Flynn, W. G., & Driscol, C. F. ( 1995 ). Relaxation of 2D turbulence to vortex crystals. Physical Review Letters, 75, 3277 â 3280. https://doi.org/10.1103/PhysRevLett.75.3277
dc.identifier.citedreferenceGarcìaâ Melendo, E., & Sánchezâ Lavega, A. ( 2001 ). A study of the stability of Jovian zonal winds from HST images: 1995â 2000. Icarus, 152 ( 2 ), 316 â 330. https://doi.org/10.1006/icar.2001.6646
dc.identifier.citedreferenceGonzalez, R. C., & Woods, R. E. ( 2008 ). Digital image processing ( 3rd ed.). Prentice Hall.
dc.identifier.citedreferenceGrassi, D., Adriani, A., Mura, A., Dinelli, B. M., Sindoni, G., Turrini, D., et al. ( 2017 ). Preliminar yresults on the composition of Jupiter’s troposphere in hot spot regions from the JIRAM/Juno instrument. Geophysical Research Letters, 44, 4615 â 4624. https://doi.org/10.1002/2017GL072841
dc.identifier.citedreferenceGrassi, D., Ignatiev, N. I., Sindoni, G., d’Aversa, E., Maestri, T., Adriani, A., et al. ( 2017 ). Analysis of IRâ bright regions of Jupiter in JIRAMâ Juno data: Methods and validation of algorithms. Journal of Quantitative Spectroscopy and Radiative Transfer, 202, 200 â 209. https://doi.org/10.1016/j.jqsrt.2017.08.008
dc.identifier.citedreferenceHueso, R., Legarreta, J., Garcı´aâ Melendo, E., Sánchezâ Lavega, A., & Pérezâ Hoyos, S. ( 2009 ). The jovian anticyclone BA: II. Circulation and interaction with the zonal jets. Icarus, 203 ( 2 ), 499 â 515. https://doi.org/10.1016/j.icarus.2009.05.004
dc.identifier.citedreferenceHueso, R., & Sánchezâ Lavega, A. ( 1998 ). Motions in hot spotâ plume regions using Voyager images. Icarus, 136 ( 2 ), 353 â 357. https://doi.org/10.1006/icar.1998.6018
dc.identifier.citedreferenceHueso, R., Sánchezâ Lavega, A., Iñurrigarro, P., Rojas, J. F., Pérezâ Hoyos, S., Mendikoa, I., et al. ( 2017 ). Jupiter cloud morphology and zonal winds from groundâ based observations before and during Juno’s first perijove. Geophysical Research Letters, 44, 4669 â 4678. https://doi.org/10.1002/2017GL073444
dc.identifier.citedreferenceIngersoll, A. P., Beebe, R. F., Mitchell, J. L., Garneau, G. W., Yagi, G. M., & Müller, J. P. ( 1981 ). Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images. Journal of Geophysical Research, 86, 8733 â 8743. https://doi.org/10.1029/JA086iA10p08733
dc.identifier.citedreferenceIrwin, P. G. J., Weir, A. L., Taylor, F. W., Calcutt, S. B., & Carlson, R. W. ( 2001 ). The origin of belt/zone contrasts in the atmosphere of Jupiter and their correlation with 5â μm opacity. Icarus, 149 ( 2 ), 397 â 415. https://doi.org/10.1006/icar.2000.6542
dc.identifier.citedreferenceLegarreta, J., & Sánchezâ Lavega, A. ( 2005 ). Jupiter’s cyclones and anticyclones vorticity from Voyager and Galileo images. Icarus, 174 ( 1 ), 178 â 191. https://doi.org/10.1016/j.icarus.2004.10.006
dc.identifier.citedreferenceLi, R., Li, R., Zeng, B., & Liou, M. L. ( 1994 ). A new threeâ step search algorithm for block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology, 4 ( 4 ), 438 â 442. https://doi.org/10.1109/76.313138
dc.identifier.citedreferenceLimaye, S. S. ( 1986 ). Jupiter: New estimates of the mean zonal flow at the cloud level. Icarus, 65 ( 2â 3 ), 335 â 352. https://doi.org/10.1016/0019â 1035(86)90142â 9
dc.identifier.citedreferenceOrton, G. S., Hansen, C., Caplinger, M., Ravine, M., Atreya, S., Ingersoll, A. P., et al. ( 2017 ). The first closeâ up images of Jupiter’s polar regions: Results from the Juno mission JunoCam instrument. Geophysical Research Letters, 44, 4599 â 4606. https://doi.org/10.1002/2016GL072443
dc.identifier.citedreferenceOrton, G. S., Ingersoll, A. P., Terrile, R. J., & Walton, S. R. ( 1981 ). Images of Jupiter from the pioneer 10 and pioneer 11 infrared radiometers: A comparison with visible and 5â μm images. Icarus, 47 ( 2 ), 145 â 158. https://doi.org/10.1016/0019â 1035(81)90162â 7
dc.identifier.citedreferencePorco, C., West, R. A., McEwen, A., del Genio, A., Ingersoll, A. P., Thomas, P., et al. ( 2003 ). Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science, 299 ( 5612 ), 1541 â 1547. https://doi.org/10.1126/science.1079462
dc.identifier.citedreferenceRead, P. L., Gierasch, P. J., & Conrath, B. J. ( 2006 ). Mapping potentialâ vorticity dynamics on Jupiter. II: The great red spot from Voyager 1 and 2 data. Quarterly Journal of the Royal Meteorological Society, 132 ( 618 ), 1605 â 1625. https://doi.org/10.1256/qj.05.35
dc.identifier.citedreferenceSánchezâ Lavega, A., Hueso, R., & Acarreta, J. R. ( 1998 ). A system of circumpolar waves in Jupiter’s stratosphere. Geophysical Research Letters, 25, 4043 â 4046. https://doi.org/10.1029/1998GL900059
dc.identifier.citedreferenceSchecter, D. A., Dubin, D. H. E., Fine, K. S., & Driscoll, C. F. ( 1999 ). Vortex crystals from 2D Euler flow: Experiment and simulation. Physics of Fluids, 11 ( 4 ), 905 â 914. https://doi.org/10.1063/1.869961
dc.identifier.citedreferenceSimonâ Miller, A. A., Gierasch, P. J., Beebe, R. F., Conrath, B., Flasar, F. M., Achterberg, R. K., & the Cassini CIRS Team ( 2002 ). New observational results concerning Jupiter’s great red spot. Icarus, 158 ( 1 ), 249 â 266. https://doi.org/10.1006/icar.2002.6867
dc.identifier.citedreferenceSussman, M. G., Chanover, N. J., Simonâ Miller, A. A., Vasavada, A. R., & Beebe, R. F. ( 2010 ). Analysis of Jupiter’s Oval BA: A streamlined approach. Icarus, 210 ( 1 ), 202 â 210. https://doi.org/10.1016/j.icarus.2010.06.044
dc.identifier.citedreferenceThomson, W. ( 1878 ). Floating magnets. Nature, 18 ( 444 ), 13 â 14. https://doi.org/10.1038/018013b0
dc.identifier.citedreferenceVallis, G. K. ( 2017 ). Atmospheric and oceanic fluid dynamics: Fundamentals and largeâ scale circulation ( 2nd ed.). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781107588417
dc.identifier.citedreferenceVasavada, A. R., Ingersoll, A. P., Banfield, D., Bell, M., Gierasch, P. J., Belton, M. J. S., et al. ( 1998 ). Galileo imaging of Jupiter’s atmosphere: The great red spot, equatorial region, and white ovals. Icarus, 135 ( 1 ), 265 â 275. https://doi.org/10.1006/icar.1998.5984
dc.identifier.citedreferenceVincent, M. B., Clarke, J. T., Ballester, G. E., Harris, W. M., West, R. A., Trauger, J. T., et al. ( 2000 ). Jupiter’s Polar Regions in the Ultraviolet as Imaged by HST/WFPC2: Auroralâ Aligned Features and Zonal Motions. Icarus, 143 ( 2 ), 205 â 222. https://doi.org/10.1006/icar.1999.6233
dc.identifier.citedreferenceWillert, C. E., & Gharib, M. ( 1991 ). Digital particle image velocimetry. Experiments in Fluids, 10 ( 4 ), 181 â 193. https://doi.org/10.1007/BF00190388
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.