Show simple item record

Current Systems in the Earth’s Magnetosphere

dc.contributor.authorGanushkina, N. Yu.
dc.contributor.authorLiemohn, M. W.
dc.contributor.authorDubyagin, S.
dc.date.accessioned2018-08-13T18:49:34Z
dc.date.available2019-08-01T19:53:23Zen
dc.date.issued2018-06
dc.identifier.citationGanushkina, N. Yu.; Liemohn, M. W.; Dubyagin, S. (2018). "Current Systems in the Earth’s Magnetosphere." Reviews of Geophysics 56(2): 309-332.
dc.identifier.issn8755-1209
dc.identifier.issn1944-9208
dc.identifier.urihttps://hdl.handle.net/2027.42/145256
dc.description.abstractThe basic structure and dynamics of the primary electric current systems in the Earth’s magnetosphere are presented and discussed. In geophysics, the word current is used to describe the flow of mass from one location to another, and its analog of electric current is a flow of charge from one place to another. An electric current is associated with a magnetic field, and they combine with the Earth’s internally generated dipolar magnetic field to form the topology of the magnetosphere. The concept of an electric current is reviewed and compared with other approaches to investigate the physics of the magnetosphere. The implications of understanding magnetospheric current systems are discussed, including paths forward for new investigations with the robust set of observations being produced by the numerous scientific and commercial satellites orbiting Earth.Key PointsThe basic structure and dynamics of the primary electric current systems in the Earth’s magnetosphere is presented and reviewedThe implications of understanding magnetospheric current systems are discussed, including paths forward for new investigationsThe concept of an electric current is reviewed and compared with other approaches to investigate the physics of the magnetosphere
dc.publisherAmerican Geophysical Union
dc.publisherWiley Periodicals, Inc.
dc.subject.otherring current
dc.subject.otherfield‐aligned currents
dc.subject.othertail current
dc.subject.othermagnetopause current
dc.subject.otherelectric currents in magnetosphere
dc.titleCurrent Systems in the Earth’s Magnetosphere
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145256/1/rog20162.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145256/2/rog20162_am.pdf
dc.identifier.doi10.1002/2017RG000590
dc.identifier.sourceReviews of Geophysics
dc.identifier.citedreferenceRaeder, J., Wang, Y. L., Fuller‐Rowell, T. J., & Singer, H. J. ( 2001 ). Global simulation of space weather effects of the Bastille Day storm. Solar Physics, 204, 325.
dc.identifier.citedreferenceVallat, C., Dandouras, I., Dunlop, M., Balogh, A., Lucek, E., Parks, G. K., et al. ( 2005 ). First current density measurements in the ring current region using simultaneous multi‐spacecraft CLUSTER‐FGM data. Annales Geophysicae, 23, 1849 – 1865. https://doi.org/10.5194/angeo-23-1849-2005
dc.identifier.citedreferenceVasyliunas, V. M. ( 1970 ). Mathematical models of magnetospheric convection and its coupling to the ionosphere. In B. M.   McCormac (Ed.), Particles and fields in the magnetosphere (pp. 60–71). Hingham, MA: D. Reidel.
dc.identifier.citedreferenceVasyliunas, V. M. ( 2001 ). Electric field and plasma flow: what drives what? Geophysical Research Letters, 28, 2177 – 2180. https://doi.org/10.1029/2001GL013014
dc.identifier.citedreferenceVasyliunas, V. M. ( 2005 ). Relation between magnetic fields and electric currents in plasmas. Annales Geophysicae, 23, 2589 – 2597.
dc.identifier.citedreferenceWalsh, A. P., Haaland, S., Forsyth, C., Keesee, A. M., Kissinger, J., Li, K., et al. ( 2014 ). Dawn‐dusk asymmetries in the coupled solar wind‐magnetosphere‐ionosphere system: A review. Annales Geophysicae, 32, 705 – 737. https://doi.org/10.5194/angeo-32-705-2104
dc.identifier.citedreferenceWei, Y., Pu, Z., Hong, M., Zong, Q., Liu, J., Guo, J., et al. ( 2010 ). Long‐lasting goodshielding at the equatorial ionosphere. Journal of Geophysical Research, 115, A12256. https://doi.org/10.1029/2010JA015786
dc.identifier.citedreferenceWeimer, D. R. ( 1996 ). A flexible, IMF dependent model of high‐latitude electric potential having “space weather” applications. Geophysical Research Letters, 23, 2549 – 2552.
dc.identifier.citedreferenceWilliams, D. J. ( 1987 ). Ring current and radiation belts. Reviews of Geophysics, 25, 570 – 578.
dc.identifier.citedreferenceWing, S., & Newell, P. T. ( 2000 ). Quiet time plasma sheet ion pressure contribution to Birkeland currents. Journal of Geophysical Research, 105 ( A4 ), 7793 – 7802. https://doi.org/10.1029/1999JA900464
dc.identifier.citedreferenceWinterhalter, D., Smith, E. J., Burton, M. E., Murphy, N., & McComas, D. J. ( 1994 ). The heliospheric plasma sheet. Journal of Geophysical Research, 99, 6667 – 6680.
dc.identifier.citedreferenceWolf, R. A. ( 1970 ). Effects of ionospheric conductivity on convective flow of plasma in the magnetosphere. Journal of Geophysical Research, 75 ( 25 ), 4677 – 4698.
dc.identifier.citedreferenceWolf, R. A., Freeman, J. W. Jr., Hausman, B. A., Spiro, R. W., Hilmer, R. V., & Lambour, R. L. ( 1997 ). Modeling convection effects in magnetic storms. In B. T.   Tsurutani, W. D.   Gonzalez, Y.   Kamide, & J. K.   Arballo (Eds.), Magnetic storms, Geophysical Monograph Series (Vol.  98, pp. 161 ). American Geophysical Union.
dc.identifier.citedreferenceWolf, R. A., Spiro, R. W., Sazykin, S., & Toffoletto, F. R. ( 2007 ). How the Earth’s inner magnetosphere works: An evolving picture. Journal of Atmospheric and Solar‐Terrestrial Physics, 69, 288 – 302. https://doi.org/10.1016/j.jastp.2006.07.026
dc.identifier.citedreferenceXing, X., Lyons, L. R., Angelopoulos, V., Larson, D., McFadden, J., Carlson, C., et al. ( 2009 ). Azimuthal plasma pressure gradient in quiet time plasma sheet. Geophysical Research Letters, 36, L14105. https://doi.org/10.1029/2009GL038881
dc.identifier.citedreferenceXu, D., & Kivelson, M. G. ( 1994 ). Polar cap field‐aligned currents for southward interplanetary magnetic fields. Journal of Geophysical Research, 99 ( A4 ), 6067 – 6078. https://doi.org/10.1029/93JA02697
dc.identifier.citedreferenceYang, J., Toffoletto, F. R., Wolf, R. A., Sazykin, S., Ontiveros, P. A., & Weygand, J. M. ( 2012 ). Large‐scale current systems and ground magnetic disturbance during deep substorm injections. Journal of Geophysical Research, 117, A04223. https://doi.org/10.1029/2011JA017415
dc.identifier.citedreferenceYang, J., Toffoletto, F. R., Wolf, R. A., & Sazykin, S. ( 2015 ). On the contribution of plasma sheet bubbles to the storm time ring current. Journal of Geophysical Research: Space Physics, 120, 7416 – 7432. https://doi.org/10.1002/2015JA021398
dc.identifier.citedreferenceZhao, H., Li, X., Baker, D. N., Fennell, J. F., Blake, J. B., Larsen, B. A., et al. ( 2015 ). The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements. Journal of Geophysical Research: Space Physics, 120, 7493 – 7511. https://doi.org/10.1002/2015JA021533
dc.identifier.citedreferenceZhao, H., Li, X., Baker, D. N., Claudepierre, S. G., Fennell, J. F., Blake, J. B., et al. ( 2016 ). Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements. Journal of Geophysical Research: Space Physics, 121, 3333 – 3346. https://doi.org/10.1002/2016JA022358
dc.identifier.citedreferenceZheng, Y., Lui, A. T. Y., Fok, M.‐C., Anderson, B. J., Brandt, P. C., Immel, T. J., & Mitchell, D. G. ( 2006 ). Relationship between Region 2 field‐aligned current and the ring current: Model results. Journal of Geophysical Research, 111, A11S06. https://doi.org/10.1029/2006JA011603
dc.identifier.citedreferenceZmuda, A. J., & Armstrong, J. C. ( 1974 ). The diurnal variation of the region with vector magnetic field changes associated with field‐aligned currents. Journal of Geophysical Research, 79 ( 16 ), 2501 – 2502. https://doi.org/10.1029/JA079i016p02501
dc.identifier.citedreferenceZmuda, A. J., Martin, J. H., & Heuring, F. T. ( 1966 ). Transverse magnetic disturbances at 1100 kilometers in the auroral region. Journal of Geophysical Research, 71 ( 21 ), 5033 – 5045. https://doi.org/10.1029/JZ071i021p05033
dc.identifier.citedreferenceAbdu, M. A. ( 1997 ). Major phenomena of the equatorial ionosphere‐thermosphere system under disturbed conditions. Journal of Atmospheric and Solar‐Terrestrial Physics, 59 ( 13 ), 1505 – 1519. https://doi.org/10.1016/S1364-6826(96)00152-6
dc.identifier.citedreferenceAkasofu, S.‐I. ( 1984 ). The magnetospheric currents: An introduction. In T. A.   Potemra (Ed.), Magnetospheric currents, Geophysical Monograph Series (Vol.  28, pp. 29 – 48 ). Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM028p0029
dc.identifier.citedreferenceAkasofu, S.‐I., & Chapman, S. ( 1961 ). The ring current, geomagnetic disturbance, and the Van Allen radiation belts. Journal of Geophysical Research, 66, 1321 – 1350.
dc.identifier.citedreferenceAkasofu, S.‐I., & Meng, C.‐I. ( 1969 ). A study of polar magnetic substorms. Journal of Geophysical Research, 74 ( 1 ), 293 – 313. https://doi.org/10.1029/JA074i001p00293
dc.identifier.citedreferenceAlexeev, I. I., Belenkaya, E. S., Kalegaev, V. V., Feldstein, Y. I., & Grafe, A. ( 1996 ). Magnetic storms and magnetotail currents. Journal of Geophysical Research, 101 ( A4 ), 7737 – 7747. https://doi.org/10.1029/95JA03509
dc.identifier.citedreferenceAlfvén, H. ( 1950 ). Discussion of the origin of the terrestrial and solar magnetic fields. Tellus, 2, 74 – 82.
dc.identifier.citedreferenceAnderson, B. J., Takahashi, K., & Toth, B. A. ( 2000 ). Sensing global Birkeland currents with Iridium engineering magnetometer data. Geophysical Research Letters, 27, 4045 – 4048. https://doi.org/10.1029/2000GL000094
dc.identifier.citedreferenceAnderson, B. J., Ohtani, S.‐I., Korth, H., & Ukhorskiy, A. ( 2005 ). Storm time dawn‐dusk asymmetry of the large‐scale Birkeland currents. Journal of Geophysical Research, 110, A12220. https://doi.org/10.1029/2005JA011246
dc.identifier.citedreferenceAnderson, B. J., Korth, H., Waters, C. L., Green, D. L., & Stauning, P. ( 2008 ). Statistical Birkeland current distributions from magnetic field observations by the Iridium constellation. Annales Geophysicae, 26, 671 – 687. https://doi.org/10.5194/angeo-26-671-2008
dc.identifier.citedreferenceAnderson, B. J., Korth, H., Waters, C. L., Green, D. L., Merkin, V. G., Barnes, R. J., & Dyrud, L. P. ( 2014 ). Development of large‐scale Birkeland currents determined from the active magnetosphere and planetary electrodynamics response experiment. Geophysical Research Letters, 41, 3017 – 3025. https://doi.org/10.1002/2014GL059941
dc.identifier.citedreferenceAngelopoulos, V. ( 2008 ). The THEMIS mission. Space Science Reviews, 141, 5 – 34. https://doi.org/10.1007/s11214-008-9336-1
dc.identifier.citedreferenceDungey, J. W. ( 1961 ). Interplanetary magnetic field and auroral zones. Physical Review Letters, 6, 47 – 49.
dc.identifier.citedreferenceAntonova, E. E. ( 2003 ). Investigation of the hot plasma pressure gradients and the configuration of magnetospheric currents from INTERBALL. Advances in Space Research, 31 ( 5 ), 1157 – 1166.
dc.identifier.citedreferenceAntonova, E. E. ( 2004 ). Magnetostatic equilibrium and current systems in the Earth’s magnetosphere. Advances in Space Research, 33 ( 5 ), 752 – 760.
dc.identifier.citedreferenceAntonova, E. E., & Ganushkina, N. Y. u. ( 1997 ). Azimuthal hot plasma pressure gradients and dawn‐dusk electric field formation. Journal of Atmospheric and Terrestrial Physics, 59, 1343 – 1354.
dc.identifier.citedreferenceAntonova, E. E., & Ganushkina, N. Y. u. ( 2000 ). Inner magnetospheric currents and their role in the magnetosphere dynamics. Physics and Chemistry of the Earth (C), 25 ( 1–2 ), 23 – 26.
dc.identifier.citedreferenceAntonova, E. E., Kirpichev, I. P., Ovchinnikov, I. L., Orlova, K. G., & Stepanova, M. V. ( 2009 ). High latitude magnetospheric topology and magnetospheric substorm. Annales Geophysicae, 27, 4069 – 4073.
dc.identifier.citedreferenceAsikainen, T., Maliniemi, V., & Mursula, K. ( 2010 ). Modeling the contributions of ring, tail, and magnetopause currents to the corrected D s t index. Journal of Geophysical Research, 115, A12203. https://doi.org/10.1029/2010JA015774
dc.identifier.citedreferenceAtkinson, G. ( 1967 ). Polar magnetic substorms. Journal of Geophysical Research, 72 ( 5 ), 1491 – 1494. https://doi.org/10.1029/JZ072i005p01491
dc.identifier.citedreferenceAxford, W. I., Petschek, H. E., & Siscoe, G. L. ( 1965 ). Tail of the magnetosphere. Journal of Geophysical Research, 70 ( 5 ), 1231 – 1236. https://doi.org/10.1029/JZ070i005p01231
dc.identifier.citedreferenceBaker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., & McPherron, R. L. ( 1996 ). Neutral line model of substorms: Past results and present view. Journal of Geophysical Research, 101 ( A6 ), 12,975 – 13,010. https://doi.org/10.1029/95JA03753
dc.identifier.citedreferenceBame, S. J., Asbridge, J. R., Felthauser, H. E., Hones, E. W., & Strong, I. B. ( 1967 ). Characteristics of the plasma sheet in the Earth’s magnetotail. Journal of Geophysical Research, 72 ( 1 ), 113 – 129. https://doi.org/10.1029/JZ072i001p00113
dc.identifier.citedreferenceBaumjohann, W., Pellinen, R. J., Opgenoorth, H. J., & Nielsen, E. ( 1981 ). Joint two‐dimensional obervations of ground magnetic and ionospheric electric fields associated with the auroral zone currents: Current systems associated with local auroral break‐ups. Planetary and Space Science, 29, 431 – 447.
dc.identifier.citedreferenceBering, III ( 1995 ). The global circuit: Global thermometer, weather by‐product or climatic modulator. Reviews of Geophysics, 33 ( S2 ), 845 – 862. https://doi.org/10.1029/95RG00549
dc.identifier.citedreferenceBierkens, M. F. P. ( 2015 ). Global hydrology 2015: State, trends, and directions. Water Resources Research, 51, 4923 – 4947. https://doi.org/10.1002/2015WR017173
dc.identifier.citedreferenceBirkeland, K. ( 1908 ). On the cause of magnetic storms and the origin of terrestial magnetism, fisrt section. In H.   Cristiania (Ed.), The Norwegian Aurora Polaris Expedition 1902-1903. Aschehoug and Co.
dc.identifier.citedreferenceBirkeland, K. ( 1913 ). On the cause of magnetic storms and the origin of terrestial magnetism, second section. In H.   Cristiania (Ed.), The Norwegian Aurora Polaris Expedition 1902-1903. Aschehoug.
dc.identifier.citedreferenceBirn, J., & Hesse, M. ( 2013 ). The substorm current wedge in MHD simulations. Journal of Geophysical Research: Space Physics, 118, 3364 – 3376. https://doi.org/10.1002/jgra.50187
dc.identifier.citedreferenceBirn, J., Hesse, M., Haerendel, G., Baumjohann, W., & Shiokawa, K. ( 1999 ). Flow braking and the substorm current wedge. Journal of Geophysical Research, 104 ( A9 ), 19,895 – 19,903. https://doi.org/10.1029/1999JA900173
dc.identifier.citedreferenceBirn, J., Raeder, J., Wang, Y. L., Wolf, R. A., & Hesse, M. ( 2004 ). On the propagation of bubbles in the geomagnetic tail. Annales Geophysicae, 22, 1773 – 1786. https://doi.org/10.5194/angeo-22-1773-2004
dc.identifier.citedreferenceBonnevier, B., Boström, R., & Rostoker, G. ( 1970 ). A three‐dimensional model current system for polar magnetic substorms. Journal of Geophysical Research, 75 ( 1 ), 107 – 122. https://doi.org/10.1029/JA075i001p00107
dc.identifier.citedreferenceBoström, R. ( 1964 ). A model of the auroral electrojets. Journal of Geophysical Research, 69 ( 23 ), 4983 – 4999. https://doi.org/10.1029/JZ069i023p04983
dc.identifier.citedreferenceBrandt, P. C., Ohtani, P. S., Mitchell, D. G., Fok, M.‐C., Roelof, E. C., & DeMajistre, R. ( 2002 ). Global ENA observations of the storm mainphase ring current: Implications for skewed electric fields in the inner magnetosphere. Geophysical Research Letters, 29 ( 20 ), 1954. https://doi.org/10.1029/2002GL015160
dc.identifier.citedreferenceBrandt, P. C., Roelof, E. C., Ohtani, S., Mitchell, D. G., & Anderson, B. ( 2004 ). IMAGE/HENA: Pressure and current distributions during the 1 October 2002 storm. Advances in Space Research, 33, 719 – 722.
dc.identifier.citedreferenceBrandt, P. C., Zheng, Y., Sotirelis, T. S., Oksavik, K., & Rich, F. J. ( 2008 ). The linkage between the ring current and the ionosphere system. In P. M.   Kintner, et al. (Eds.), Midlatitude ionospheric dynamics and disturbances, Geophysical Monograph Series (Vol.  181, pp. 135 – 143 ). Washington, DC: American Geophysical Union.
dc.identifier.citedreferenceBurch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. ( 2016 ). Magnetospheric multiscale overview and science objectives. Space Science Reviews, 199, 5 – 21. https://doi.org/10.1007/s11214-015-0164-9
dc.identifier.citedreferenceBurke, W. J., Maynard, N. C., Hagan, M. P., Wolf, R. A., Wilson, G. R., Gentile, L. C., et al. ( 1998 ). Electrodynamics of the inner magnetosphere observed in the dusk sector by CRESS and DMSP during the magnetic storm of June 4‐6, 1991. Journal of Geophysical Research, 103, 29,399 – 29,418.
dc.identifier.citedreferenceBurke, W. J., Weimer, D. R., & Maynard, N. C. ( 1999 ). Geoeffective interplanetary scale sizes derived from regression analysis of polar cap potentials. Journal of Geophysical Research, 104 ( A5 ), 9989 – 9994. https://doi.org/10.1029/1999JA900031
dc.identifier.citedreferenceBuzulukova, N., Fok, M.‐C., Goldstein, J., Valek, P., McComas, D., & Brandt, P. C. ( 2010 ). Ring current dynamics in modest and strong storms: Comparative analysis of TWINS and IMAGE/HENA data with CRCM. Journal of Geophysical Research, 115, A12234. https://doi.org/10.1029/2010JA015292
dc.identifier.citedreferenceBuzulukova, N., Fok, M.‐C., Pulkkinen, A., Kuznetsova, M., Moore, T. E., Glocer, A., et al. ( 2010 ). Dynamics of ring current and electric fields in the inner magnetosphere during disturbed periods: CRCM‐BATS‐R‐US coupled model. Journal of Geophysical Research, 115, A05210. https://doi.org/10.1029/2009JA014621
dc.identifier.citedreferenceCahill, L. J., & Amazeen, P. G. ( 1963 ). The boundary of the geomagnetic field. Journal of Geophysical Research, 68, 1835 – 1843.
dc.identifier.citedreferenceCarrington, R. C. ( 1860 ). Description of a singular appearance seen in the Sun on September 1, 1859. Monthly Notices of the Royal Astronomical Society, 20, 13 – 14.
dc.identifier.citedreferenceChapman, S., & Ferraro, V. C. A. ( 1931 ). A new theory of magnetic storms. Terrestrial Magnetism and Atmospheric Electricity, 36, 77 – 97.
dc.identifier.citedreferenceChapman, S., & Ferraro, V. C. A. ( 1941 ). The geomagnetic ring‐current: I—Its radial stability. Terrestrial Magnetism and Atmospheric Electricity, 46, 1 – 6.
dc.identifier.citedreferenceChun, F. K., & Russell, C. T. ( 1997 ). Field aligned currents in the inner magnetosphere: Control by geomagnetic activity. Journal of Geophysical Research, 102, 2261 – 2270.
dc.identifier.citedreferenceClauer, C. R., & McPherron, R. L. ( 1974 ). Mapping the local time‐universal time development of magnetospheric substorms using mid‐Latitude magnetic observations. Journal of Geophysical Research, 79 ( 19 ), 2811 – 2820.
dc.identifier.citedreferenceClausen, L. B. N., Baker, J. B. H., Ruohoniemi, J. M., Milan, S. E., & Anderson, B. J. ( 2012 ). Dynamics of the region 1 Birkeland current oval derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Journal of Geophysical Research, 117, A06233. https://doi.org/10.1029/2012JA017666
dc.identifier.citedreferenceCole, K. D. ( 1963 ). Motions of the aurora and radio‐aurora and their relationships to ionospheric currents. Planetary and Space Science, 10, 129 – 163.
dc.identifier.citedreferenceCoroniti, F. V., & Kennel, C. F. ( 1972 ). Changes in magnetospheric configuration during the substorm growth phase. Journal of Geophysical Research, 77, 3361 – 3370.
dc.identifier.citedreferenceCowley, S. W. H. ( 2000 ). Magnetosphere‐ionosphere interactions: A tutorial review. In S.‐I. Ohtani, R.   Fujii, M.   Hesse, & R. L.   Lysak (Eds.), Magnetospheric current systems, Geophysical Monograph Series (118 pp.). Washington, DC: American Geophysical Union.
dc.identifier.citedreferenceCoxon, J. C., Milan, S. E., Clausen, L. B. N., Anderson, B. J., & Korth, H. ( 2014 ). The magnitudes of the regions 1 and 2 Birkeland currents observed by AMPERE and their role in solar wind‐magnetosphere‐ionosphere coupling. Journal of Geophysical Research, 119, 9804 – 9815. https://doi.org/10.1002/2014JA020138
dc.identifier.citedreferenceCramer, W. D., Turner, N. E., Fok, M.‐C., & Buzulukova, N. Y. ( 2013 ). Effects of different geomagnetic storm drivers on the ring current: CRCM results. Journal of Geophysical Research: Space Physics, 118, 1062–1073. https://doi.org/10.1002/jgra.50138
dc.identifier.citedreferenceDabas, R. S., Das, R. M., Vohra, V. K., & Devasia, C. V. ( 2006 ). Space weather impact on the equatorial and low latitude F‐region ionosphere over India. Annales Geophysicae, 24, 97 – 105.
dc.identifier.citedreferenceDaglis, I. A. ( 2001 ). The storm‐time ring current. Space Science Reviews, 98, 343 – 363.
dc.identifier.citedreferenceDaglis, I. A. ( 2006 ). Ring current dynamics. Space Science Reviews, 124 ( 1–4 ), 183 – 202. https://doi.org/10.1007/s11214-006-9104-z
dc.identifier.citedreferenceDaglis, I. A., Thorne, R. M., Baumjohann, W., & Orsini, S. ( 1999 ). The terrestrial ring current current: Origin, formation, and decay. Reviews of Geophysics, 37, 407 – 438.
dc.identifier.citedreferenceDavid, M., Sojka, J. J., Schunk, R. W., Liemohn, M. W., & Coster, A. J. ( 2011 ). Dayside mid‐latitude ionospheric response to storm‐time electric fields. Journal of Geophysical Research, 116, A12302. https://doi.org/10.1029/2011JA016988
dc.identifier.citedreferenceDe Michelis, P., Daglis, I. A., & Consolini, G. ( 1997 ). Average terrestrial ring current derived from AMPTE/CCE‐CHEM measurements. Journal of Geophysical Research, 102, 14,103 – 14,111.
dc.identifier.citedreferenceDe Michelis, P., Daglis, I. A., & Consolini, G. ( 1999 ). An average image of proton plasma pressure and of current systems in the equatorial plane derived from AMPTE/CCE‐CHEM measurements. Journal of Geophysical Research, 104, 28,615 – 28,624. https://doi.org/10.1029/1999JA900310
dc.identifier.citedreferenceDijkstra, H. A., & Ghil, M. ( 2005 ). Low‐frequency variability of the large‐scale ocean circulation: A dynamical systems approach. Reviews of Geophysics, 43, RG3002. https://doi.org/10.1029/2002RG000122
dc.identifier.citedreferenceDunlop, M. W., Haaland, S., Escoubet, P. C., & Dong, X.‐C. ( 2016 ). Commentary on accessing 3‐D currents in space: Experiences from Cluster. Journal of Geophysical Research: Space Physics, 121, 7881 – 7886. https://doi.org/10.1002/2016JA022668
dc.identifier.citedreferenceEbihara, Y., & Ejiri, M. ( 2003 ). Numerical simulation of the ring current: Review. Space Science Reviews, 105, 377. https://doi.org/10.1023/A:1023905607888
dc.identifier.citedreferenceEbihara, Y., Ejiri, M., Nilsson, H., Sandahl, I., Milillo, A., Grande, M., et al. ( 2002 ). Statistical distribution of the storm‐time proton ring current: POLAR measurements. Geophysical Research Letters, 29, 1969. https://doi.org/10.1029/2002GL015430
dc.identifier.citedreferenceEgeland, A., & Burke, W. J. ( 2012 ). The ring current: A short biography. History of Geo‐ and Space Sciences, 3, 131 – 142.
dc.identifier.citedreferenceEgger, J., Weickmann, K., & Hoinka, K.‐P. ( 2007 ). Angular momentum in the global atmospheric circulation. Reviews of Geophysics, 45, RG4007. https://doi.org/10.1029/2006RG000213
dc.identifier.citedreferenceEmanuel, K. A., David Neelin, J., & Bretherton, C. S. ( 1994 ). On large‐scale circulations in convecting atmospheres. Quarterly Journal of the Royal Meteorological Society, 120, 1111 – 1143. https://doi.org/10.1002/qj.49712051902
dc.identifier.citedreferenceErlandson, R. E., Zanetti, L. J., Potemra, T. A., Bythrow, P. F., & Lundin, R. ( 1988 ). IMF B y dependence of region 1 Birkeland currents near noon. Journal of Geophysical Research, 93 ( A9 ), 9804 – 9814. https://doi.org/10.1029/JA093iA09p09804
dc.identifier.citedreferenceEscoubet, C. P., Fehringer, M., & Goldstein, M. ( 2001 ). Introduction: The Cluster mission. Annales Geophysicae, 19, 1197 – 1200.
dc.identifier.citedreferenceFairfield, D. H. ( 1977 ). Electric and magnetic fields in the high‐latitude magnetosphere. Reviews of Geophysics, 15 ( 3 ), 285 – 298. https://doi.org/10.1029/RG015i003p00285
dc.identifier.citedreferenceFairfield, D. H. ( 1979 ). On the average configuraton of the geomagnetic tail. Journal of Geophysical Research, 84 ( A5 ), 1950 – 1958. https://doi.org/10.1029/JA084iA05p01950
dc.identifier.citedreferenceFan, Y. ( 2015 ). Groundwater in the Earth’s critical zone: Relevance to large‐scale patterns and processes. Water Resources Research, 51, 3052 – 3069. https://doi.org/10.1002/2015WR017037
dc.identifier.citedreferenceFejer, J. A. ( 1961 ). The effects of energetic trapped particles on magnetospheric motions and ionospheric currents. Canadian Journal de Physique, 39, 1409 – 1417.
dc.identifier.citedreferenceFejer, B. G., & Scherliess, L. ( 1997 ). Empirical models of storm time equatorial zonal electric fields. Journal of Geophysical Research, 102 ( A11 ), 24,047 – 24,056.
dc.identifier.citedreferenceFejer, B. G., & Scherliess, L. ( 1998 ). Mid‐ and low‐latitude prompt‐penetration ionospheric zonal plasma drifts. Geophysical Research Letters, 25, 3071 – 3074.
dc.identifier.citedreferenceFejer, B. G., Spiro, R. W., Wolf, R. A., & Foster, J. C. ( 1990 ). Latitudinal variation of perturbation electric fields during magnetically disturbed periods—1986 SUNDIAL observations and model results. Annales Geophysicae, 8, 441 – 454.
dc.identifier.citedreferenceFok, M.‐C., Wolf, R. A., Spiro, R. W., & Moore, T. E. ( 2001 ). Comprehensive computational model of the Earth’s ring current. Journal of Geophysical Research, 106, 8417 – 8424. https://doi.org/10.1029/2000JA000235
dc.identifier.citedreferenceFoster, J. C., & Burke, W. J. ( 2002 ). SAPS: A new categorization for sub‐auroral electric fields. Eos, Transactions American Geophysical Union, 83 ( 36 ), 393 – 394.
dc.identifier.citedreferenceFoster, J. C., Cummer, S., & Inan, U. S. ( 1998 ). Midlatitude particle and electric field effects at the onset of the November 1993 geomagnetic storm. Journal of Geophysical Research, 103 ( A11 ), 26,359 – 26,366.
dc.identifier.citedreferenceFoster, J. C., Rideout, W., Sandel, B., Forrester, W. T., & Rich, F. J. ( 2007 ). On the relationship of SAPS to storm‐enhanced density. Journal of Atmospheric and Solar‐Terrestrial Physics, 69, 303 – 313.
dc.identifier.citedreferenceFrank, L. A. ( 1967 ). Several observations of low‐energy protons and electrons in the Earth’s magnetosphere with OGO 3. Journal of Geophysical Research, 72 ( 7 ), 1905 – 1916. https://doi.org/10.1029/JZ072i007p01905
dc.identifier.citedreferenceFuselier, S. A., Lewis, W. S., Schiff, C., Ergun, R., Burch, J. L., Petrinec, S. M., & Trattner, K. J. ( 2016 ). Magnetospheric Multiscale science mission profile and operations. Space Science Reviews, 199, 77 – 103. https://doi.org/10.1007/s11214-014-0087-x
dc.identifier.citedreferenceGanushkina, N. Y., Pulkkinen, T. I., Kubyshkina, M. V., Singer, H. J., & Russell, C. T. ( 2002 ). Modeling the ring current magnetic field during storms. Journal of Geophysical Research, 107 ( A7 ), 1092. https://doi.org/10.1029/2001JA900101
dc.identifier.citedreferenceGanushkina, N. Y., Pulkkinen, T. I., Kubyshkina, M. V., Singer, H. J., & Russell, C. T. ( 2004 ). Long‐term evolution of magnetospheric current systems during storms. Annales Geophysicae, 22, 1317 – 1334.
dc.identifier.citedreferenceGanushkina, N. Y., Liemohn, M., Kubyshkina, M., Ilie, R., & Singer, H. ( 2010 ). Distortions of the magnetic field by storm‐time current systems in Earth’s magnetosphere. Annales Geophysicae, 28, 123 – 140.
dc.identifier.citedreferenceGanushkina, N. Y., Liemohn, M. W., Dubyagin, S., Daglis, I. A., Dandouras, I., De Zeeuw, D. L., et al. ( 2015 ). Defining and resolving current systems in geospace. Annales Geophysicae, 33, 1369 – 1402. https://doi.org/10.5194/angeo-33-1369-2015
dc.identifier.citedreferenceGauss, C. F. ( 1839 ). Allgemeine Theorie des Erdmagnetismus, Resultate aus den Beobachtugen des magnetischen Vereins im Jahre 1838. Leipzig: Gauß‐Werke. (Reprinted in Werke, 5, 119‐193, Königliche Gesellschaff der Wissenschaften, Göttingen, 1877.)
dc.identifier.citedreferenceGillmor, C. S. ( 1997 ). The formation and early evolution of studies of the magnetosphere. In C. S.   Gillmor & J. R.   Spreiter (Eds.), Discovery of the magnetosphere. Washington, DC: American Geophysical Union. https://doi.org/10.1029/HG007p0001
dc.identifier.citedreferenceGkioulidou, M., Ukhorskiy, A. Y., Mitchell, D. G., & Lanzerotti, L. J. ( 2016 ). Storm time dynamics of ring current protons: Implications for the long‐term energy budget in the inner magnetosphere. Geophysical Research Letters, 43, 4736 – 4744. https://doi.org/10.1002/2016GL068013
dc.identifier.citedreferenceGoldstein, J., Spiro, R. W., Reiff, P. H., Wolf, R. A., Sandel, B. R., Freeman, J. W., & Lambour, R. L. ( 2002 ). IMF‐driven overshielding electric field and the origin of the plasmaspheric shoulder of May 24, 2000. Geophysical Research Letters, 29 ( 16 ), 1819. https://doi.org/10.1029/2001GL014534
dc.identifier.citedreferenceGoldstein, J., Spiro, R. W., Sandel, B. R., Wolf, R. A., Su, S.‐Y., & Reiff, P. H. ( 2003 ). Overshielding event of 28–29 July 2000. Geophysical Research Letters, 30 ( 8 ), 1421. https://doi.org/10.1029/2002GL016644
dc.identifier.citedreferenceGoldstein, J., Valek, P., McComas, D. J., & Redfern, J. ( 2012 ). TWINS energetic neutral atom observations of local‐time‐dependent ring current anisotropy. Journal of Geophysical Research, 117, A11213. https://doi.org/10.1029/2012JA017804
dc.identifier.citedreferenceGonzales, C. A., Kelley, M. C., Carpenter, L. A., & Holzworth, R. H. ( 1978 ). Evidence for a magnetospheric effect on mid‐latitude electric fields. Journal of Geophysical Research, 83, 4397 – 4399.
dc.identifier.citedreferenceGordon, A. L. ( 1986 ). Interocean exchange of thermocline water. Journal of Geophysical Research, 91 ( C4 ), 5037 – 5046. https://doi.org/10.1029/JC091iC04p05037
dc.identifier.citedreferenceGrad, H. ( 1964 ). Some new variational properties of hydromagnetic equilibria. Physics of Fluids, 7, 1283 – 1292. https://doi.org/10.1063/1.1711373
dc.identifier.citedreferenceIijima, T., Fujii, R., Potemra, T. A., & Saflekos, N. A. ( 1978 ). Field‐aligned currents in the south polar cusp and their relationship to the interplanetary magnetic field. Journal of Geophysical Research, 83 ( A12 ), 5595 – 5603. https://doi.org/10.1029/JA083iA12p05595
dc.identifier.citedreferenceIijima, T., & Potemra, T. A. ( 1976a ). The amplitude distribution of field‐aligned currents at northern high latitudes observed by Triad. Journal of Geophysical Research, 81, 2165 – 2174.
dc.identifier.citedreferenceIijima, T., & Potemra, T. A. ( 1976b ). Field‐aligned currents in the dayside cusp observed by Triad. Journal of Geophysical Research, 81, 5971 – 5979. https://doi.org/10.1029/JA081i034p05971
dc.identifier.citedreferenceIijima, T., & Potemra, T. A. ( 1982 ). The relationship between interplanetary quantities and Birkeland current densities. Geophysical Research Letters, 9, 442 – 445. https://doi.org/10.1029/GL009i004p00442
dc.identifier.citedreferenceIijima, T., Potemra, T. A., Zanetti, L. J., & Bythrow, P. F. ( 1984 ). Large‐scale Birkeland currents in the dayside polar region during strongly northward IMF: A new Birkeland current system. Journal of Geophysical Research, 89 ( A9 ), 7441 – 7452. https://doi.org/10.1029/JA089iA09p07441
dc.identifier.citedreferenceIijima, T., Potemra, T. A., & Zanetti, L. J. ( 1990 ). Large‐scale characteristics of magnetospheric equatorial currents. Journal of Geophysical Research, 95, 991 – 999.
dc.identifier.citedreferenceJacquey, C., Sauvaud, J. A., Dandouras, J., & Korth, A. ( 1993 ). Tailward propagating cross‐tail current disruption and dynamics of near‐Earth tail: A multi‐point measurement analysis. Geophysical Research Letters, 20, 983 – 986.
dc.identifier.citedreferenceJellinek, A. M., & Manga, M. ( 2004 ). Links between long‐lived hot spots, mantle plumes, D", and plate tectonics. Reviews of Geophysics, 42, RG3002. https://doi.org/10.1029/2003RG000144
dc.identifier.citedreferenceJorgensen, A. M., Spence, H. E., Hughes, W. J., & Singer, H. J. ( 2004 ). A statistical study of the global structure of the ring current. Journal of Geophysical Research, 109, A12204. https://doi.org/10.1029/2003JA010090
dc.identifier.citedreferenceHaaland, S. E., Sonnerup, B. U., Dunlop, M. W., Balogh, A., Georgescu, E., Hasegawa, H., et al. ( 2004 ). Four‐spacecraft determination of magnetopause orientation, motion and thickness: Comparison with results from single‐spacecraft methods. Annales Geophysicae, 22, 1347 – 1365.
dc.identifier.citedreferenceHairston, M. R., Hill, T. W., & Heelis, R. A. ( 2003 ). Observed saturation of the ionospheric polar cap potential during the 31 March 2001 storm. Geophysical Research Letters, 30 ( 6 ), 1325. https://doi.org/10.1029/2002GL015894
dc.identifier.citedreferenceHedgecock, P. C., & Thomas, B. T. ( 1975 ). HEOS observations of the configuration of the magnetosphere. Geophysical Journal of the Royal Astronomical Society, 41, 391 – 403. https://doi.org/10.1111/j.1365-246X.1975.tb01622.x
dc.identifier.citedreferenceHeikkila, W. J. ( 1984 ). Magnetospheric topology of fields and currents. In T. A.   Potemra (Ed.), Magnetospheric currents. Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM028p0208
dc.identifier.citedreferenceHeinemann, M. ( 1990 ). Representations of currents and magnetic fields in anisotropic magnetohydrostatic plasma. Journal of Geophysical Research, 95, 7789 – 7797.
dc.identifier.citedreferenceHeinemann, M., & Pontius, D. H. Jr. ( 1991 ). Representation of currents and magnetic fields in anisotropic magnetohydrostatic plasma. 2. General theory and examples. Journal of Geophysical Research, 96, 17,605 – 17,626.
dc.identifier.citedreferenceHill, T. W., Dessler, A. J., & Wolf, R. A. ( 1976 ). Mercury and Mars: The role of ionospheric conductivity in the acceleration of magnetospheric particles. Geophysical Research Letters, 3, 429 – 432. https://doi.org/10.1029/GL003i008p00429
dc.identifier.citedreferenceHilmer, R. V., & Voigt, G.‐H. ( 1995 ). A magnetospheric magnetic field model with flexible current systems driven by independent physical parameters. Journal of Geophysical Research, 100, 5613 – 5626.
dc.identifier.citedreferenceHones, E. W. Jr. ( 1979 ). Transient phenomena in the magnetotail and their relation to substorms. Space Science Reviews, 23, 393 – 410.
dc.identifier.citedreferenceHorton, W., Weigel, R. S., Vassiliadis, D., & Doxas, I. ( 2003 ). Substorm classification with the WINDMI model. Nonlinear Processes in Geophysics, 10, 363 – 371.
dc.identifier.citedreferenceHorton, W., Mithaiwala, M., Spencer, E., & Doxas, I. ( 2005 ). WINDMI: A family of physics network models for storms and substorms. In A.   Lui, Y.   Kamide, & G.   Consolini (Eds.), Multi‐scale coupling of Sun‐Earth processes. New York: Elsevier.
dc.identifier.citedreferenceHuba, J. D., & Sazykin, S. ( 2014 ). Storm time ionosphere and plasmasphere structuring: SAMI3‐RCM simulation of the 31 March 2001 geomagnetic storm. Geophysical Research Letters, 41, 8208 – 8214. https://doi.org/10.1002/2014GL062110
dc.identifier.citedreferenceKamide, Y. ( 1974 ). Association of DP and DR fields with the interplanetary magnetic field variation. Journal of Geophysical Research, 79 ( 1 ), 49 – 55. https://doi.org/10.1029/JA079i001p00049
dc.identifier.citedreferenceKamide, Y., & Fukushima, N. ( 1971 ). Analysis of magnetic storms with DR indices for equatorial ring‐current field. Radio Science, 6 ( 2 ), 277 – 278. https://doi.org/10.1029/RS006i002p00277
dc.identifier.citedreferenceKatus, R. M., Liemohn, M. W., Ionides, E., Ilie, R., Welling, D. T., & Sarno‐Smith, L. K. ( 2015 ). Statistical analysis of the geomagnetic response to different solar wind drivers and the dependence on storm intensity. Journal of Geophysical Research: Space Physics, 120, 310 – 327. https://doi.org/10.1002/2014JA020712
dc.identifier.citedreferenceKeiling, A. ( 2009 ). Alfvén waves and their roles in the dynamics of the Earth’s magnetotail: A review. Space Science Reviews, 142, 73 – 156. https://doi.org/10.1007/s11214-008-9463-8
dc.identifier.citedreferenceKepko, L., Glassmeier, K.‐H., Slavin, J. A., & Sundberg, T. ( 2015 ). Substorm current wedge at Earth and Mercury. In A.   Keiling, C. M.   Jackman, & P. A.   Delamere (Eds.), Magnetotails in the solar system. Hoboken, NJ: John Wiley. https://doi.org/10.1002/9781118842324.ch21
dc.identifier.citedreferenceKistler, L. M., Mouikis, C. G., Spence, H. E., Menz, A. M., Skoug, R. M., Funsten, H. O., et al. ( 2016 ). The source of O + in the storm time ring current. Journal of Geophysical Research: Space Physics, 121, 5333 – 5349. https://doi.org/10.1002/2015JA022204
dc.identifier.citedreferenceKivelson, M. G., & Russell, C. T. (Eds.) ( 1995 ). Introduction to Space Physics (Vol.  586 ). Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceKivelson, M. G., & Ridley, A. J. ( 2008 ). Saturation of the polar cap potential: Inference from Alfven wing arguments. Journal of Geophysical Research, 113, A05214. https://doi.org/10.1029/2007JA012302
dc.identifier.citedreferenceKomar, C. M., Fermo, R. L., & Cassak, P. A. ( 2015 ). Comparative analysis of dayside magnetic reconnection models in global magnetosphere simulations. Journal of Geophysical Research: Space Physics, 120, 276 – 294. https://doi.org/10.1002/2014JA020587
dc.identifier.citedreferenceKorenaga, J. ( 2008 ). Urey ratio and the structure and evolution of Earth’s mantle. Reviews of Geophysics, 46, RG2007. https://doi.org/10.1029/2007RG000241
dc.identifier.citedreferenceKorth, A., Friedel, R. H. W., Mouikis, C. G., Fennell, J. F., Wygant, J. R., & Korth, H. ( 2000 ). Comprehensive particle and field observations of magnetic storms at different local times from the CRRES spacecraft. Journal of Geophysical Research, 105, 18,729 – 18,740.
dc.identifier.citedreferenceKozyra, J. U., & Liemohn, M. W. ( 2003 ). Ring current energy input and decay. Space Science Reviews, 109, 105 – 131.
dc.identifier.citedreferenceKubyshkina, M. V., Pulkkinen, T. I., Ganushkina, N. Y. u., & Partamies, N. ( 2008 ). Magnetospheric currents during sawtooth events: Event oriented magnetic field model analysis. Journal of Geophysical Research, 113, A08211. https://doi.org/10.1029/2007JA012983
dc.identifier.citedreferenceKuijpers, J., Frey, H. U., & Fletcher, L. ( 2015 ). Electric current circuits in astrophysics. Space Science Reviews, 188, 3 – 57. https://doi.org/10.1007/s11214-014-0041-y
dc.identifier.citedreferenceLe, G., Lühr, H., Anderson, B. J., Strangeway, R. J., Russell, C. T., Singer, H., et al. ( 2016 ). Magnetopause erosion during the 17 March 2015 magnetic storm: Combined field‐aligned currents, auroral oval, and magnetopause observations. Geophysical Research Letters, 43, 2396 – 2404. https://doi.org/10.1002/2016GL068257
dc.identifier.citedreferenceLe, G., & Russell, C. T. ( 1994 ). The thickness and structure of high beta magnetopause current layer. Geophysical Research Letters, 21, 2451 – 2454. https://doi.org/10.1029/94GL02292
dc.identifier.citedreferenceLe, G., Russell, C. T., & Takahashi, K. ( 2004 ). Morphology of the ring current derived from magnetic field observations. Annales Geophysicae, 22, 1267 – 1295.
dc.identifier.citedreferenceLiemohn, M. W., & Brandt, P. C. ( 2005 ). Small‐scale structure in the stormtime ring current. In J. L.   Burch, M.   Schulz, & H.   Spence (Eds.), Inner magnetosphere interactions: New perspectives from imaging, Geophysical Monograph Series (Vol.  159, 167 pp.). Washington, DC: American Geophysical Union.
dc.identifier.citedreferenceLiemohn, M. W., De Zeeuw, D. L., Ganushkina, N. Y., Kozyra, J. U., & Welling, D. T. ( 2013 ). Magnetospheric cross‐field currents during the January 6‐7, 2011, high‐speed stream‐driven interval. Journal of Atmospheric and Solar‐Terrestrial Physics, 99, 78 – 84. https://doi.org/10.1016/j.jastp.2012.09.007
dc.identifier.citedreferenceLiemohn, M. W., De Zeeuw, D. L., Ilie, R., & Ganushkina, N. Y. ( 2011 ). Deciphering magnetospheric cross‐field currents. Geophysical Research Letters, 38, L20106. https://doi.org/10.1029/2011GL049611
dc.identifier.citedreferenceLiemohn, M. W., Kozyra, J. U., Clauer, C. R., & Ridley, A. J. ( 2001 ). Computational analysis of the near‐Earth magnetospheric current system during two‐phase decay storms. Journal of Geophysical Research, 106 ( A12 ), 29,531 – 29,542. https://doi.org/10.1029/2001JA000045
dc.identifier.citedreferenceLiemohn, M. W., Ganushkina, N. Y., Ilie, R., & Welling, D. T. ( 2016 ). Challenges associated with near‐Earth nightside current. Journal of Geophysical Research: Space Physics, 121, 6763 – 6768. https://doi.org/10.1002/2016JA022948
dc.identifier.citedreferenceLiemohn, M. W., Ganushkina, N. Y., Katus, R. M., De Zeeuw, D. L., & Welling, D. T. ( 2013 ). The magnetospheric banana current. Journal of Geophysical Research: Space Physics, 118, 1009 – 1021. https://doi.org/10.1002/jgra.50153
dc.identifier.citedreferenceLiemohn, M. W., Katus, R. M., & Ilie, R. ( 2015 ). Statistical analysis of storm‐time near‐Earth current systems. Annales Geophysicae, 33, 965 – 982. https://doi.org/10.5194/angeo-33-965-2015
dc.identifier.citedreferenceLiemohn, M. W., Ridley, A. J., Brandt, P. C., Gallagher, D. L., Kozyra, J. U., Mitchell, D. G., et al. ( 2005 ). Parametric analysis of nightside conductance effects on inner magnetospheric dynamics for the 17 April 2002 storm. Journal of Geophysical Research, 110, A12S22. https://doi.org/10.1029/2005JA011109
dc.identifier.citedreferenceLiemohn, M. W., Ridley, A. J., Gallagher, D. L., Ober, D. M., & Kozyra, J. U. ( 2004 ). Dependence of plasmaspheric morphology on the electric field description during the recovery phase of the April 17, 2002 magnetic storm. Journal of Geophysical Research, 109, A03209. https://doi.org/10.1029/2003JA010304
dc.identifier.citedreferenceLiemohn, M. W., Ridley, A. J., Kozyra, J. U., Gallagher, D. L., Thomsen, M. F., Henderson, M. G., et al. ( 2006 ). Analyzing electric field morphology through data‐model comparisons of the GEM IM/S Assessment Challenge events. Journal of Geophysical Research, 111, A11S11. https://doi.org/10.1029/2006JA011700
dc.identifier.citedreferenceLiu, J., Angelopoulos, V., Runov, A., & Zhou, X.‐Z. ( 2013 ). On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedgelets. Journal of Geophysical Research: Space Physics, 118, 2000 – 2020. https://doi.org/10.1002/jgra.50092
dc.identifier.citedreferenceLockwood, M., Cowley, S. W. H., & Freeman, M. P. ( 1990 ). The excitation of plasmac onvectionin the high‐latitude ionosphere. Journal of Geophysical Research, 95, 7961.
dc.identifier.citedreferenceLockwood, M. ( 2016 ). Jim Dungey, the open magnetosphere, and space weather. Space Weather, 14, 380 – 383. https://doi.org/10.1002/2016SW001438
dc.identifier.citedreferenceLopez, R. E. ( 2016 ). The integrated dayside merging rate is controlled primarily by the solar wind. Journal of Geophysical Research: Space Physics, 121, 4435 – 4445. https://doi.org/10.1002/2016JA022556
dc.identifier.citedreferenceLopez, R. E., Bruntz, R., Mitchell, E. J., Wiltberger, M., Lyon, J. G., & Merkin, V. G. ( 2010 ). Role of magnetosheath force balance in regulating the dayside reconnection potential. Journal of Geophysical Research, 115, A12216. https://doi.org/10.1029/2009JA014597
dc.identifier.citedreferenceLopez, R. E., & Lui, A. T. Y. ( 1990 ). A multisatellite case study of the expansion of a substorm current wedge in the near‐Earth magnetotail. Journal of Geophysical Research, 95 ( A6 ), 8009 – 8017. https://doi.org/10.1029/JA095iA06p08009
dc.identifier.citedreferenceLotko, W., Sonnerup, B. U., & Lysak, R. L. ( 1987 ). Nonsteady boundary layer flow including ionospheric drag and parallel electric fields. Journal of Geophysical Research, 92 ( A8 ), 8635 – 8648. https://doi.org/10.1029/JA092iA08p08635
dc.identifier.citedreferenceLotko, W. ( 2007 ). The magnetosphere‐ionosphere system from the perspective of plasma circulation: A tutorial. Journal of Atmospheric and Solar‐Terrestrial Physics, 69 ( 3 ), 191 – 211.
dc.identifier.citedreferenceLui, A. T. Y. ( 1991 ). A synthesis of magnetospheric substorm models. Journal of Geophysical Research, 96 ( A2 ), 1849 – 1856. https://doi.org/10.1029/90JA02430
dc.identifier.citedreferenceLui, A. T. Y. ( 2000 ). Electric current approach to magnetospheric physics and the distinction between current disruption and magnetic reconnection. In S.‐I. Ohtani, R.   Fujii, M.   Hesse, & R. L.   Lysak (Eds.), Magnetospheric current systems. Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM118p0031
dc.identifier.citedreferenceLui, A. T. Y. ( 2003 ). Inner magnetospheric plasma pressure distribution and its local time asymmetry. Geophysical Research Letters, 30, 1846. https://doi.org/10.1029/2003GL017596
dc.identifier.citedreferenceLui, A. T. Y., & Hamilton, D. C. ( 1992 ). Radial profiles of quiet time magnetospheric parameters. Journal of Geophysical Research, 97, 19,325 – 19,332.
dc.identifier.citedreferenceLui, A. T. Y., McEntire, R. W., & Krimigis, S. M. ( 1987 ). Evolution of the ring current during two geomagnetic storms. Journal of Geophysical Research, 92 ( A7 ), 7459 – 7470.
dc.identifier.citedreferenceLühr, H., Xiong, C., Olsen, N., & Le, G. ( 2017 ). Near‐Earth magnetic field effects of large‐scale magnetospheric currents. Space Science Reviews, 206, 521–545. https://doi.org/10.1007/s11214-016-0267-y
dc.identifier.citedreferenceMaezawa, K. ( 1976 ). Magnetospheric convection induced by the positive and negative Z components of the interplanetary magnetic field: Quantitative analysis using polar cap magnetic records. Journal of Geophysical Research, 81 ( 13 ), 2289 – 2303. https://doi.org/10.1029/JA081i013p02289
dc.identifier.citedreferenceMaltsev, Y. P. ( 2004 ). Points of controversy in the study of magnetic storms. Space Science Reviews, 110, 227 – 277.
dc.identifier.citedreferenceMannucci, A. J., Tsurutani, B. T., Abdu, M. A., Gonzalez, W. D., Komjathy, A., Echer, E., et al. ( 2008 ). Superposed epoch analysis of the dayside ionospheric response to four intense geomagnetic storms. Journal of Geophysical Research, 113, A00A02. https://doi.org/10.1029/2007JA012732
dc.identifier.citedreferenceMannucci, A. J., Tsurutani, B. T., Kelley, M. C., Iijima, B. A., & Komjathy, A. ( 2009 ). Local time dependence of the prompt ionospheric response for the 7, 9, and 10 November 2004 superstorms. Journal of Geophysical Research, 114, A10308. https://doi.org/10.1029/2009JA014043
dc.identifier.citedreferenceMauk, B. H., & Zanetti, L. J. ( 1987 ). Magnetospheric electric fields and currents. Reviews of Geophysics, 25 ( 3 ), 541 – 554.
dc.identifier.citedreferenceMauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy, A. ( 2013 ). Science objectives and rationale for the Radiation Belt Storm Probes mission. Space Science Reviews, 179, 3 – 27. https://doi.org/10.1007/s11214-012-9908-y
dc.identifier.citedreferenceMcPherron, R. L. ( 2015 ). Earth’s magnetotail. In A.   Keiling, C. M.   Jackman, & P. A.   Delamere (Eds.), Magnetotails in the solar system. Hoboken, NJ: John Wiley. https://doi.org/10.1002/9781118842324.ch4
dc.identifier.citedreferenceMcPherron, R. L., Russell, C. T., Kivelson, M. G., & Coleman, P. J. Jr. ( 1973 ). Substorms in space: The correlation between ground and satellite observations of the magnetic field. Radio Science, 8 ( 11 ), 1059 – 1076. https://doi.org/10.1029/RS008i011p01059
dc.identifier.citedreferenceMcPherron, R. L., Russell, C. T., & Aubry, M. P. ( 1973 ). Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological Model for Substorms. Journal of Geophysical Research, 78 ( 16 ), 3131 – 3149. https://doi.org/10.1029/JA078i016p03131
dc.identifier.citedreferenceMead, G. D., & Fairfield, D. H. ( 1975 ). A quantitative magnetospheric model derived from spacecraft magnetometer data. Journal of Geophysical Research, 80, 523 – 534.
dc.identifier.citedreferenceMeng, C.‐I., & Akasofu, S.‐I. ( 1969 ). A study of polar magnetic substorms: 2. Three‐dimensional current system. Journal of Geophysical Research, 74 ( 16 ), 4035 – 4053. https://doi.org/10.1029/JA074i016p04035
dc.identifier.citedreferenceMerkin, V. G., Anderson, B. J., Lyon, J. G., Korth, H., Wiltberger, M., & Motoba, T. ( 2013 ). Global evolution of Birkeland currents on 10 min timescales: MHD simulations and observations. Journal of Geophysical Research: Space Physics, 118, 4977 – 4997. https://doi.org/10.1002/jgra.50466
dc.identifier.citedreferenceMerkin, V. G., Papadopoulos, K., Milikh, G., Sharma, A. S., Shao, X., Lyon, J., & Goodrich, C. ( 2003 ). Effects of the solar wind electric field and ionospheric conductance on the cross polar cap potential: Results of global MHD modeling. Geophysical Research Letters, 30 ( 23 ), 2180. https://doi.org/10.1029/2003GL017903
dc.identifier.citedreferenceMerkin, V. G., Sharma, A. S., Papadopoulos, K., Milikh, G., Lyon, J., & Goodrich, C. ( 2005 ). Global MHD simulations of the strongly driven magnetosphere: Modeling of the transpolar potential saturation. Journal of Geophysical Research, 110, A09203. https://doi.org/10.1029/2004JA010993
dc.identifier.citedreferenceMenz, A. M., Kistler, L. M., Mouikis, C. G., Spence, H. E., Skoug, R. M., Funsten, H. O., et al. ( 2017 ). The role of convection in the buildup of the ring current pressure during the 17 March 2013 storm. Journal of Geophysical Research: Space Physics, 122, 475 – 492. https://doi.org/10.1002/2016JA023358
dc.identifier.citedreferenceNagai, T. ( 1982 ). Observed magnetic substorm signatures at synchronous altitude. Journal of Geophysical Research, 87, 4405 – 4417.
dc.identifier.citedreferenceNakamura, R., Baumjohann, W., Schödel, R., Brittnacher, M., Sergeev, V. A., Kubyshkina, M., et al. ( 2001 ). Earthward flow bursts, auroral streamers, and small expansions. Journal of Geophysical Research, 106 ( A6 ), 10,791 – 10,802. https://doi.org/10.1029/2000JA000306
dc.identifier.citedreferenceNess, N. F. ( 1965 ). The Earth’s magnetic tail. Journal of Geophysical Research, 70 ( 13 ), 2989 – 3005. https://doi.org/10.1029/JZ070i013p02989
dc.identifier.citedreferenceOber, D. M., Maynard, N. C., Burke, W. J., Wilson, G. R., & Siebert, K. D. ( 2006 ). “Shoulders” on the high‐latitude magnetopause: Polar/GOES observations. Journal of Geophysical Research, 111, A10213. https://doi.org/10.1029/2006JA011799
dc.identifier.citedreferenceOhtani, S., & Uozumi, T. ( 2014 ). Nightside magnetospheric current circuit: Time constants of the solar wind‐magnetosphere coupling. Journal of Geophysical Research: Space Physics, 119, 3558 – 3572. https://doi.org/10. 1002/2013JA019680
dc.identifier.citedreferenceOhtani, S., Kokubun, S., Elphic, R. C., & Russell, C. T. ( 1988 ). Field‐aligned current signatures in the near‐tail region: 1. ISEE observations in the plasma sheet boundary layer. Journal of Geophysical Research, 93 ( A9 ), 9709 – 9720. https://doi.org/10.1029/JA093iA09p09709
dc.identifier.citedreferenceSpiro, R. W., Wolf, R. A., & Fejer, B. G. ( 1988 ). Penetrating of high‐latitude‐electric‐field effects to low latitudes during SUNDIAL 1984. Annales Geophysicae, 6, 39 – 49.
dc.identifier.citedreferenceOhtani, S., Kokubun, S., Nakamura, R., Elphic, R. C., Russell, C. T., & Baker, D. N. ( 1990 ). Field‐aligned current signatures in the near‐tail region: 2. Coupling between the region 1 and the region 2 systems. Journal of Geophysical Research, 95 ( A11 ), 18,913 – 18,927. https://doi.org/10.1029/JA095iA11p18913
dc.identifier.citedreferenceOhtani, S., Potemra, T. A., Newell, P. T., Zanetti, L. J., Iijima, T., Watanabe, M., et al. ( 1995 ). Simultaneous prenoon and postnoon observations of three field‐aligned current systems from Viking and DMSP‐F7. Journal of Geophysical Research, 100 ( A1 ), 119 – 136. https://doi.org/10.1029/94JA02073
dc.identifier.citedreferenceOhtani, S., Takahashi, K., Higuchi, T., Lui, A. T. Y., Spence, H. E., & Fennell, J. F. ( 1998 ). AMPTE/CCE‐SCATHA simultaneous observations of substorm‐associated magnetic fluctuations. Journal of Geophysical Research, 103 ( A3 ), 4671 – 4682. https://doi.org/10.1029/97JA03239
dc.identifier.citedreferenceOpgenoorth, H. J., Pellinen, R. J., Maurer, J., Kiippers, F., Heikkila, W. J., Kaila, K. U., & Tanskanen, P. ( 1980 ). Ground‐based observations of an onset of localized field‐aligned currents during auroral breakup around magnetic midnight. Journal of Geophysical Research, 4, 101 – 115.
dc.identifier.citedreferenceOwen, C. J., Slavin, J. A., Richardson, I. G., Murphy, N., & Hynds, R. J. ( 1995 ). Average motion, structure and orientation of the distant magnetotail determined from remote sensing of the edge of the plasma sheet boundary layer with E > 35 keV ions. Journal of Geophysical Research, 100 ( A1 ), 185 – 204. https://doi.org/10.1029/94JA02417
dc.identifier.citedreferencePapitashvili, V. O., Rich, F. J., Heinemann, M. A., & Hairston, M. R. ( 1999 ). Parameterization of the defense meteorological satellite program ionospheric electrostatic potentials by the interplanetary magnetic field strength and direction. Journal of Geophysical Research, 104, 177 – 184.
dc.identifier.citedreferenceParker, E. N. ( 1957 ). Newtonian development of the dynamical properties of ionized gases of low density. Physical Review, 107, 924 – 933.
dc.identifier.citedreferenceParker, E. N. ( 1996 ). The alternative paradigm for magnetospheric physics. Journal of Geophysical Research, 101, 10,587 – 10,625.
dc.identifier.citedreferenceParker, E. N. ( 2000 ). Newton, Maxwell, and magnetospheric physics. In S.‐I. Ohtani, R.   Fujii, M.   Hesse, & R. L.   Lysak (Eds.), Magnetospheric current systems, Geophysical Monograph Series (Vol.  118 ). Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM118p0001
dc.identifier.citedreferencePatra, S., Spencer, E., Horton, W., & Sojka, J. ( 2011 ). Study of D s t /ring current recovery times using the WINDMI model. Journal of Geophysical Research, 116, A02212. https://doi.org/10.1029/2010JA015824
dc.identifier.citedreferencePayne, A. E., & Magnusdottir, G. ( 2016 ). Persistent landfalling atmospheric rivers over the west coast of North America. Journal of Geophysical Research: Atmospheres, 121, 13,287 – 13,300. https://doi.org/10.1002/2016JD025549
dc.identifier.citedreferencePeymirat, C., Richmond, A. D., & Kobea, A. T. ( 2000 ). Electrodynamic coupling of high and low latitudes: Simulations of shielding/overshielding effects. Journal of Geophysical Research, 105 ( A10 ), 22,991 – 23,003. https://doi.org/10.1029/2000JA000057
dc.identifier.citedreferencePetrinec, S. M., & Russell, C. T. ( 1996 ). Near‐Earth magnetotail shape and size as determined from the magnetopause flaring angle. Journal of Geophysical Research, 101, 137 – 152.
dc.identifier.citedreferencePhan, T. D., Freeman, M. P., Kistler, L. M., Klecker, B., Haerendel, G., Paschmann, G., et al. ( 2001 ). Evidence for an extended reconnection line at the dayside magnetopause. Earth Planets and Space, 53 ( 6 ), 619 – 625.
dc.identifier.citedreferencePhan, T. D., Escoubet, C. P., Rezeau, L., Treumann, R. A., Vaivads, A., Paschmann, G., et al. ( 2005 ). Magnetopause processes. Space Science Reviews, 118 ( 1–4 ), 367 – 424.
dc.identifier.citedreferencePi, X., Mendillo, M., Hughes, W. J., Buonsanto, M. J., Sipler, D. P., Kelly, J., et al. ( 2000 ). Dynamical effects of geomagnetic storms and substorms in the middle‐latitude ionosphere: An observational campaign. Journal of Geophysical Research, 105 ( A4 ), 7403 – 7417. https://doi.org/10.1029/1999JA900460
dc.identifier.citedreferencePollock, C., Asamara, K., Balkey, M. M., Burch, J. L., Funsten, H. O., Grande, M., et al. ( 2001 ). First medium energy neutral atom MENA images of Earth’s magnetosphere during substorm and storm‐time. Geophysical Research Letters, 28, 1147 – 1150.
dc.identifier.citedreferencePotemra, T. A. ( 1979 ). Current systems in the Earth’s magnetosphere: A review of U.S. progress for the 1975–1978 IUGG quadrennial report. Reviews of Geophysics, 17 ( 4 ), 640 – 656. https://doi.org/10.1029/RG017i004p00640
dc.identifier.citedreferencePulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., et al. ( 2013 ). Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 – 385. https://doi.org/10.1002/swe.20056
dc.identifier.citedreferenceRastätter, L., Tóth, G., Kuznetsova, M. M., & Pulkkinen, A. A. ( 2014 ). CalcDeltaB: An efficient postprocessing tool to calculate ground‐level magnetic perturbations from global magnetosphere simulations. Space Weather, 12, 553 – 565. https://doi.org/10.1002/2014SW001083
dc.identifier.citedreferenceRidley, A. J., & Liemohn, M. W. ( 2002 ). A model‐derived storm time asymmetric ring current driven electric field description. Journal of Geophysical Research, 107 ( A8 ), 1151. https://doi.org/10.1029/2001JA000051
dc.identifier.citedreferenceRidley, A. J., Lu, G., Clauer, C. R., & Papitashvili, V. O. ( 1998 ). A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique. Journal of Geophysical Research, 103 ( A3 ), 4023 – 4039. https://doi.org/10.1029/97JA03328
dc.identifier.citedreferenceRoelof, E. C. ( 1987 ). Energetic neutral atom image of a storm‐time ring current. Geophysical Research Letters, 14, 652 – 655.
dc.identifier.citedreferenceRoelof, E. C. ( 1989 ). Remote sensing of the ring current using energetic neutral atoms. Advances in Space Research, 9, 195 – 203.
dc.identifier.citedreferenceRoelof, E. C., & Skinner, A. J. ( 2000 ). Extraction of ion distributions from magnetospheric ENA and EUV images. Space Science Reviews, 91, 437 – 459.
dc.identifier.citedreferenceRoelof, E. C., C:son Brandt, P., & Mitchell, D. G. ( 2004 ). Derivation of currents and diamagnetic effects from global plasma pressure distributions obtained by IMAGE/HENA. Advances in Space Research, 33, 747 – 751.
dc.identifier.citedreferenceRostoker, G., Anderson III, C. W., Oldenburg, D. W., Camfield, P. A., Gough, D. I., & Porath, H. ( 1970 ). Development of a polar magnetic substorm current system. Journal of Geophysical Research, 75 ( 31 ), 6318 – 6323. https://doi.org/10.1029/JA075i031p06318
dc.identifier.citedreferenceRycroft, M. J., & Harrison, R. G. ( 2012 ). Electromagnetic atmosphere‐plasma coupling: The global atmospheric electric circuit. Space Science Reviews, 168, 363 – 384. https://doi.org/10.1007/s11214-011-9830-8
dc.identifier.citedreferenceSchmidt, A. ( 1917 ). Erdmagnetismus. Enzyklopädie der Mathematischem Wissenschaften, VI, 265 – 396.
dc.identifier.citedreferenceSergeev, V. A., Vagina, L. I., Elphinstone, R. D., Murphree, J. S., Hearn, D. J., Cogger, L. L., & Johnson, M. L. ( 1996 ). Comparison of UV optical signatures with the substorm current wedge as predicted by an inversion algorithm. Journal of Geophysical Research, 101 ( A2 ), 2615 – 2627. https://doi.org/10.1029/95JA00537
dc.identifier.citedreferenceSergeev, V. A., Tsyganenko, N. A., Smirnov, M. V., Nikolaev, A. V., Singer, H. J., & Baumjohann, W. ( 2011 ). Magnetic effects of the substorm current wedge in a spread‐out wire model and their comparison with ground, geosynchronous, and tail lobe data. Journal of Geophysical Research, 116, A07218. https://doi.org/10.1029/2011JA016471
dc.identifier.citedreferenceSibeck, D. G., & Angelopoulos, V. ( 2008 ). THEMIS science objectives and mission phases. Space Science Reviews, 141, 35 – 59. https://doi.org/10.1007/s11214-008-9393-5
dc.identifier.citedreferenceSiscoe, G. L., Lotko, W., & Sonnerup, B. U. ( 1991 ). A high‐latitude, low‐latitude boundary layer model of the convection current system. Journal of Geophysical Research, 96 ( A3 ), 3487 – 3495. https://doi.org/10.1029/90JA02362
dc.identifier.citedreferenceSiscoe, G. L., Crooker, N. U., Erickson, P. B., Sonnerup, B. U. Ö., Siebert, K. D., Weimer, D. R., et al. ( 2000 ). Global geometry of magnetospheric currents inferred from MHD simulations. In S.‐I. Ohtani, R.   Fujii, M.   Hesse, & R. L.   Lysak (Eds.), Magnetospheric current systems. Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM118p0041
dc.identifier.citedreferenceSiscoe, G. L., Crooker, N. U., & Siebert, K. D. ( 2002 ). Transpolar potential saturation: Roles of region 1 current system and solar wind ram pressure. Journal of Geophysical Research, 107 ( A10 ), 1321. https://doi.org/10.1029/2001JA009176
dc.identifier.citedreferenceSiscoe, G., Raeder, J., & Ridley, A. J. ( 2004 ). Transpolar potential saturation models compared. Journal of Geophysical Research, 109, A09203. https://doi.org/10.1029/2003JA010318
dc.identifier.citedreferenceSitnov, M. I., Tsyganenko, N. A., Ukhorskiy, A. Y., Anderson, B. J., Korth, H., Lui, A. T. Y., & Brandt, P. C. ( 2010 ). Empirical modeling of a CIR‐driven magnetic storm. Journal of Geophysical Research, 115, A07231. https://doi.org/10.1029/2009JA015169
dc.identifier.citedreferenceShi, Y., Zesta, E., & Lyons, L. R. ( 2008 ). Modeling magnetospheric current response to solar wind dynamic pressure enhancements during magnetic storms: 1. Methodology and results of the 25 September 1998 peak main phase case. Journal of Geophysical Research, 113, A10218. https://doi.org/10.1029/2008JA013111
dc.identifier.citedreferenceSmith, E. J. ( 2001 ). The heliospheric current sheet. Journal of Geophysical Research, 106 ( A8 ), 15,819 – 15,831. https://doi.org/10.1029/2000JA000120
dc.identifier.citedreferenceSmith, P. H., & Hoffman, R. A. ( 1974 ). Direct observations in the dusk hours of the characteristics of the storm time ring current particles during the beginning of magnetic storms. Journal of Geophysical Research, 79, 966 – 971.
dc.identifier.citedreferenceSojka, J. J., David, M., Schunk, R. W., Foster, J. C., & Vo, H. B. ( 2004 ). A modeling study of the F region response to SAPS. Journal of Atmospheric and Solar‐Terrestrial Physics, 66, 415 – 423. https://doi.org/10.1016/j.jastp.2003.11.003
dc.identifier.citedreferenceSouthwood, D. J., & Wolf, R. A. ( 1978 ). An assessment of the role of precipitation in magnetospheric convection. Journal of Geophysical Research, 83, 5227 – 5232.
dc.identifier.citedreferenceSpeiser, T. W., & Ness, N. F. ( 1967 ). The neutral sheet in the geomagnetic tail: Its motion, equivalent currents, and field line connection through it. Journal of Geophysical Research, 72 ( 1 ), 131 – 141. https://doi.org/10.1029/JZ072i001p00131
dc.identifier.citedreferenceSpence, H. E., Kivelson, M. G., & Walker, R. J. ( 1989 ). Magnetospheric plasma pressure in the midnight meridian: Observations from 2.5 to 35  R E. Journal of Geophysical Research, 94, 5264 – 5272.
dc.identifier.citedreferenceStephens, G. K., Sitnov, M. I., Kissinger, J., Tsyganenko, N. A., McPherron, R. L., Korth, H., & Anderson, B. J. ( 2013 ). Empirical reconstruction of storm time steady magnetospheric convection events. Journal of Geophysical Research: Space Physics, 118, 6434 – 6456. https://doi.org/10.1002/jgra.50592
dc.identifier.citedreferenceStephens, G. K., Sitnov, M. I., Ukhorskiy, A. Y., Roelof, E. C., Tsyganenko, N. A., & Le, G. ( 2016 ). Empirical modeling of the storm time innermost magnetosphere using Van Allen Probes and THEMIS data: Eastward and banana currents. Journal of Geophysical Research: Space Physics, 121, 157 – 170. https://doi.org/10.1002/2015JA021700
dc.identifier.citedreferenceStern, D. P. ( 1976 ). Representation of magnetic fields in space. Reviews of Geophysics, 14 ( 2 ), 199 – 214. https://doi.org/10.1029/RG014i002p00199
dc.identifier.citedreferenceStern, D. P. ( 1977 ). Large‐scale electric fields in the Earth’s magnetosphere. Reviews of Geophysics, 15 ( 2 ), 156 – 194. https://doi.org/10.1029/RG015i002p00156
dc.identifier.citedreferenceStern, D. P. ( 1983 ). The origins of Birkeland currents. Reviews of Geophysics, 21 ( 1 ), 125 – 138. https://doi.org/10.1029/RG021i001p00125
dc.identifier.citedreferenceStern, D. P. ( 1989 ). A brief history of magnetospheric physics before the spaceflight era. Reviews of Geophysics, 27, 103 – 114.
dc.identifier.citedreferenceStern, D. P. ( 1996 ). A brief history of magnetospheric physics during the space age. Reviews of Geophysics, 34 ( 1 ), 1 – 31. https://doi.org/10.1029/95RG03508
dc.identifier.citedreferenceStewart, B. ( 1882 ). Terrestrial magnetism. In T. S.   Baynes & W. R.   Smith (Eds.), Encyclopaedia Britannica (Vol.  16, 9th ed., pp. 159 – 184 ). Edinburgh: A & C Black.
dc.identifier.citedreferenceStratton, J. M., Harvey, R. J., & Heyler, G. A. ( 2013 ). Mission overview for the Radiation Belt Storm Probes Mission. Space Science Reviews, 179, 29 – 57. https://doi.org/10.1007/s11214-012-9933-x
dc.identifier.citedreferenceStörmer, C. ( 1907 ). Sur les trajectories des corpuscles electrises dans l’espace sous l’action du magnetisme terrestre avec application aux aurores boreales. Archives des Sciences Physiques et Naturelles, 24, 317 – 364.
dc.identifier.citedreferenceTakada, T., Nakamura, R., Juusola, L., Amm, O., Baumjohann, W., Volwerk, M., et al. ( 2008 ). Local field‐aligned currents in the magnetotail and ionosphere as observed by a Cluster, Double Star, and MIRACLE conjunction. Journal of Geophysical Research, 113, A07S20. https://doi.org/10.1029/2007JA012759
dc.identifier.citedreferenceTanaka, T. ( 1995 ). Generation mechanisms for magnetosphere‐ionosphere current systems deduced from a three‐dimensional MHD simulation of the solar wind‐magnetosphere‐ionosphere coupling process. Journal of Geophysical Research, 100, 12,057 – 12,074.
dc.identifier.citedreferenceTsyganenko, N. A. ( 1987 ). Global quantitative models of the geomagnetic field in the cislunar magnetosphere for difference disturbance levels. Planetary and Space Science, 35, 1347 – 1358.
dc.identifier.citedreferenceTsyganenko, N. A. ( 1989 ). A magnetospheric magnetic field model with a warped tail current sheet. Planetary and Space Science, 37, 5 – 20.
dc.identifier.citedreferenceTsyganenko, N. A. ( 1995 ). Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. Journal of Geophysical Research, 100, 5599 – 5612.
dc.identifier.citedreferenceTsyganenko, N. A. ( 2000 ). Modeling the inner magnetosphere: The asymmetric ring current and Region 2 Birkeland currents revisited. Journal of Geophysical Research, 105 ( A12 ), 27,739 – 27,754. https://doi.org/10.1029/2000JA000138
dc.identifier.citedreferenceTsyganenko, N. A., & Sitnov, M. I. ( 2005 ). Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. Journal of Geophysical Research, 110, A03208. https://doi.org/10.1029/2004JA010798
dc.identifier.citedreferenceTsyganenko, N. A., & Sitnov, M. I. ( 2007 ). Magnetospheric configurations from a high‐resolution data‐based magnetic field model. Journal of Geophysical Research, 112, A06225. https://doi.org/10.1029/2007JA012260
dc.identifier.citedreferenceTsyganenko, N. A., Karlsson, S. B. P., Kokubun, S., Yamamoto, T., Lazarus, A. J., Ogilvie, K. W., et al. ( 1998 ). Global configuration of the magnetotail current sheet as derived from Geotail, Wind, IMP 8 and ISEE 1/2 data. Journal of Geophysical Research, 103 ( A4 ), 6827 – 6841. https://doi.org/10.1029/97JA03621
dc.identifier.citedreferenceTverskoy, B. A. ( 1982 ). On magnetospheric field‐aligned currents. Geomagnetism and Aeronomy, 22, 991 – 995.
dc.identifier.citedreferenceUntiedt, J., Pellinen, R., Kuppers, F., Opgenoorth, H. J., Pelster, W. D., Baumjohann, W., et al. ( 1978 ). Observations of the initial development of an auroral and magnetic substorm at magnetic midnight. Journal of Geophysical Research, 45, 41 – 56.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.