Show simple item record

Head and Neck MRA at 3.0T

dc.contributor.authorBernstein, Matt A.
dc.contributor.authorHuston, John
dc.date.accessioned2018-08-13T18:50:12Z
dc.date.available2018-08-13T18:50:12Z
dc.date.issued2008-06
dc.identifier.citationBernstein, Matt A.; Huston, John (2008). "Head and Neck MRA at 3.0T." Current Protocols in Magnetic Resonance Imaging 15(1): A7.8.1-A7.8.16.
dc.identifier.issn2572-5637
dc.identifier.issn2572-5637
dc.identifier.urihttps://hdl.handle.net/2027.42/145280
dc.description.abstract3.0T MRI scanners are becoming more widely used in clinical practice, particularly for neurological applications. The increased signal‐to‐noise ratio (SNR) provided by 3.0T compared to 1.5T is particularly useful for applications like magnetic resonance angiography (MRA). A protocol to image the intracranial circulation with 3‐D time of flight (3DTOF), and a protocol to image the carotid, vertebral, and basilar arteries with contrast‐enhanced MRA are presented. The increased SNR at 3.0T is used to increase the spatial resolution. For the 3DTOF exam, the acquisition time is also reduced with the use of parallel imaging.
dc.publisherElsevier Academic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherneck
dc.subject.otherCircle of Willis
dc.subject.othercarotid
dc.subject.other3T
dc.subject.otherMRA
dc.subject.otherhead
dc.titleHead and Neck MRA at 3.0T
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelFamily Medicine and Primary Care
dc.subject.hlbsecondlevelRadiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145280/1/cpmia0708.pdf
dc.identifier.doi10.1002/0471142719.mia0708s15
dc.identifier.sourceCurrent Protocols in Magnetic Resonance Imaging
dc.identifier.citedreferencePrince, M.R., Grist, T.M.,and Debatin, J.F. 1999. 3D Contrast MR Angiography. Springer, Berlin.
dc.identifier.citedreferenceBernstein, M.A., Huston, J. III, Lin, C., Gibbs, G.F.,and Felmlee, J.P. 2001. High‐resolution intracranial and cervical MRA at 3.0T: Technical considerations and initial experience. Magn. Reson. Med. 46: 955 ‐ 962.
dc.identifier.citedreferenceBernstein, M.A., King, K.F.,and Zhou, X.J. 2004. Handbook of MRI pulse sequences. Elsevier Academic Press, Amsterdam.
dc.identifier.citedreferenceDrangova, M. and Pelc, N.J. 1996. Artifacts and signal loss due to flow in the presence of B 0 inhomogeneity. Magn. Reson. Med. 35: 126 ‐ 130.
dc.identifier.citedreferenceEarls, J.P., Rofsky, N.M., DeCorato, D.R., Krinsky, G.A.,and Weinreb, J.C. 1997. Hepatic arterial‐phase dynamic gadolinium‐enhanced MR imaging: Optimization with a test examination and a power injector. Radiology 202: 268 ‐ 273.
dc.identifier.citedreferenceHoult, D.I. 2000. Sensitivity and power deposition in a high‐field imaging experiment. J. Magn. Reson. Imaging 12: 46 ‐ 67.
dc.identifier.citedreferenceHuston, J. III, Fain, S.B., Wald, J.T., Luetmer, P.H., Rydberg, C.H., Covarrubias, D.J., Riederer, S.J., Bernstein, M.A., Brown, R.D., Meyer, F.B., Bower, T.C.,and Schleck, C.D. 2001. Carotid artery: Elliptic centric contrast‐enhanced MR angiography compared with conventional angiography radiology. Radiology 218: 138 ‐ 143.
dc.identifier.citedreferenceLin, C., Bernstein, M.A., Gibbs, G.F.,and Huston, J. III. 2003. Reduction of RF power for magnetization transfer with optimized application of RF pulses in k ‐space. Magn. Reson. Med. 50: 114 ‐ 121.
dc.identifier.citedreferenceLin, C., Bernstein, M.A.,and Huston, J. III, 2004. Improvements of 3DTOF MRA at 3.0T. In Proceedings of the 12th International Society for Magnetic Resonance in Medicine, Kyoto, Japan,p. 2573. ISMRM, Berkeley, Calif.
dc.identifier.citedreferenceMaki, J.H., Prince, M.R., Londy, F.J.,and Chenevert, T.L. 1996. The effects of time varying intravascular signal intensity and k ‐space acquisition order on three‐dimensional MR angiography image quality. J. Magn. Reson. Imaging 6: 642 ‐ 651.
dc.identifier.citedreferenceMistretta, C.A., Grist, T.M., Korosec, F.R., Frayne, R., Peters, D.C., Mazaheri, Y.,and Carrol, T.J. 1998. 3D time‐resolved contrast‐enhanced MR DSA: Advantages and tradeoffs. Magn. Reson. Med. 40: 571 ‐ 581.
dc.identifier.citedreferenceParker, D.L., Yuan, C.,and Blatter, D.D. 1991. MR angiography by multiple thin slab 3D acquisition. Magn. Reson. Med. 17: 434 ‐ 451.
dc.identifier.citedreferenceParker, D.L., Buswell, H.R., Goodrich, K.C., Alexander, A.L., Keck, N.,and Tsuruda, J.S. 1995. The application of magnetization transfer to MR angiography with reduced total power. Magn. Reson. Med. 34: 283 ‐ 286.
dc.identifier.citedreferencePruessmann, K.P., Weiger, M., Scheidegger, M.B.,and Boesiger, P. 1999. SENSE: Sensitivity Encoding for Fast MRI. Magn. Reson. Med. 42: 952 ‐ 962.
dc.identifier.citedreferenceRiederer, S.J., Bernstein, M.A., Breen, J.F., Busse, R.F., Ehman, R.L., Fain, S.B., Hulshizer, T.C., Huston, J. III, King, B.F., Kruger, D.G., Rossman, P.J.,and Shah, S. 2000. Three‐dimensional contrast‐enhanced MR angiography with real‐time fluoroscopic triggering: Design specifications and technical reliability in 330 patient studies. Radiology 215: 584 ‐ 593.
dc.identifier.citedreferenceShellock, F.G. 2005. Reference Manual for Magnetic Resonance Safety, Implants and Devices, 2005 edition. Biomedical Research Publishing Group, Los Angeles, Calif.
dc.identifier.citedreferenceWillinek, W.A., Gieseke, J., Conrad, R., Strunk, H., Hoogeveen, R., von Falkenhausen, M., Keller, E., Urbach, H., Kuhl, C.K.,and Schild, H.H. 2002. Randomly segmented central k ‐space ordering in high‐spatial‐resolution contrast‐enhanced MR angiography of the supraaortic arteries: Initial experience. Radiology 225: 583 ‐ 588.
dc.identifier.citedreferenceWilman, A.H., Riederer, S.J., King, B.F., Debbins, J.P., Rossman, P.J.,and Ehman, R.L. 1997. Fluoroscopically triggered contrast‐enhanced three‐dimensional MR angiography with elliptical centric view order: application to the renal arteries. Radiology 205: 137 ‐ 146.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.