Show simple item record

Retrievable hydrogels for ovarian follicle transplantation and oocyte collection

dc.contributor.authorRios, Peter D.
dc.contributor.authorKniazeva, Ekaterina
dc.contributor.authorLee, Hoi Chang
dc.contributor.authorXiao, Shuo
dc.contributor.authorOakes, Robert S.
dc.contributor.authorSaito, Eiji
dc.contributor.authorJeruss, Jacqueline S.
dc.contributor.authorShikanov, Ariella
dc.contributor.authorWoodruff, Teresa K.
dc.contributor.authorShea, Lonnie D.
dc.date.accessioned2018-08-13T18:50:34Z
dc.date.available2019-10-01T16:02:10Zen
dc.date.issued2018-08
dc.identifier.citationRios, Peter D.; Kniazeva, Ekaterina; Lee, Hoi Chang; Xiao, Shuo; Oakes, Robert S.; Saito, Eiji; Jeruss, Jacqueline S.; Shikanov, Ariella; Woodruff, Teresa K.; Shea, Lonnie D. (2018). "Retrievable hydrogels for ovarian follicle transplantation and oocyte collection." Biotechnology and Bioengineering 115(8): 2075-2086.
dc.identifier.issn0006-3592
dc.identifier.issn1097-0290
dc.identifier.urihttps://hdl.handle.net/2027.42/145292
dc.description.abstractCancer survivorship rates have drastically increased due to improved efficacy of oncologic treatments. Consequently, clinical concerns have shifted from solely focusing on survival to quality of life, with fertility preservation as an important consideration. Among fertility preservation strategies for female patients, ovarian tissue cryopreservation and subsequent reimplantation has been the only clinical option available to cancer survivors with cryopreserved tissue. However, follicle atresia after transplantation and risk of reintroducing malignant cells have prevented this procedure from becoming widely adopted in clinics. Herein, we investigated the encapsulation of ovarian follicles in alginate hydrogels that isolate the graft from the host, yet allows for maturation after transplantation at a heterotopic (i.e., subcutaneous) site, a process we termed in vivo follicle maturation. Survival of multiple follicle populations was confirmed via histology, with the notable development of the antral follicles. Collected oocytes (63%) exhibited polar body extrusion and were fertilized by intracytoplasmic sperm injection and standard in vitro fertilization procedures. Successfully fertilized oocytes developed to the pronucleus (14%), two‐cell (36%), and four‐cell (7%) stages. Furthermore, ovarian follicles cotransplanted with metastatic breast cancer cells within the hydrogels allowed for retrieval of the follicles, and no mice developed tumors after removal of the implant, confirming that the hydrogel prevented seeding of disease within the host. Collectively, these findings demonstrate a viable option for safe use of potentially cancer‐laden ovarian donor tissue for in vivo follicle maturation within a retrievable hydrogel and subsequent oocyte collection. Ultimately, this technology may provide novel options to preserve fertility for young female patients with cancer.The authors present an alginate hydrogel as a retrievable technology to mature ovarian follicles subcutaneously and to prevent escape and subsequent metastasis of cancer cells. Early stage follicles were transplanted within hydrogels, matured in vivo, and oocytes subsequently collected. Fertilized oocytes progressed to the 2‐cell and 4‐cell embryo stages. These findings demonstrate retrievable hydrogels as a novel approach to mature follicles and obtain fertilizable oocytes, but also to alleviate concerns related to re‐seeding disease from cryopreserved auto‐transplanted ovarian tissue.
dc.publisherAmerican Cancer Society
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfollicle
dc.subject.otheroocyte
dc.subject.otheralginate
dc.subject.otherbiomaterial
dc.subject.otherhydrogel
dc.titleRetrievable hydrogels for ovarian follicle transplantation and oocyte collection
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145292/1/bit26721_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145292/2/bit26721.pdf
dc.identifier.doi10.1002/bit.26721
dc.identifier.sourceBiotechnology and Bioengineering
dc.identifier.citedreferenceVanacker, J., Dolmans, M.‐M., Luyckx, V., Donnez, J., & Amorim, C. A. ( 2014 ). First transplantation of isolated murine follicles in alginate. Regenerative Medicine, 9, 609 – 619.
dc.identifier.citedreferenceImthurn, B., Cox, S. L., Jenkin, G., Trounson, A. O., & Shaw, J. M. ( 2000 ). Gonadotrophin administration can benefit ovarian tissue grafted to the body wall: Implications for human ovarian grafting. Molecular and Cellular Endocrinology, 163, 141 – 146.
dc.identifier.citedreferenceJin, S. Y., Lei, L., Shikanov, A., Shea, L. D., & Woodruff, T. K. ( 2010 ). A novel two‐step strategy for in vitro culture of early‐stage ovarian follicles in the mouse. Fertility and Sterility, 93, 2633 – 2639.
dc.identifier.citedreferenceKim, S. Y., Kim, S. K., Lee, J. R., & Woodruff, T. K. ( 2016 ). Toward precision medicine for preserving fertility in cancer patients: Existing and emerging fertility preservation options for women. Journal of Gynecologic Oncology, 27, e22. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4717227&tool=pmcentrez&rendertype=abstract.
dc.identifier.citedreferenceKniazeva, E., Hardy, A. N., Boukaidi, S. A., Woodruff, T. K., Jeruss, J. S., & Shea, L. D. ( 2015 ). Primordial follicle transplantation within designer biomaterial grafts produce live births in a mouse infertility model. Scientific Reports, 5, 17709. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4668556&tool=pmcentrez&rendertype=abstract.
dc.identifier.citedreferenceKöllmer, M., Appel, A. A., Somo, S. I., & Brey, E. M. ( 2015 ). Long‐term function of alginate‐encapsulated islets. Tissue Engineering. Part B, Reviews, 22, 34 – 46. http://www.ncbi.nlm.nih.gov/pubmed/26414084.
dc.identifier.citedreferenceKondapalli, L. A., & Ginsberg, J. P. ( 2012 ). Ovarian tissue cryopreservation and transplantation, Oncofertility Medical Practice: Clinical Issues and Implementation. 63 – 75. New York, NY: Springer Science+Business Media. http://oncofertility.northwestern.edu/sites/oncofertility/files/legacy_files/uploadedfilecontent/ovarian_tissue_cryopreservation_and_transplantation_‐_laxmi_a._kondapalli.pdf.
dc.identifier.citedreferenceKreeger, P. K., Deck, J. W., Woodruff, T. K., & Shea, L. D. ( 2006 ). The in vitro regulation of ovarian follicle development using alginate‐extracellular matrix gels. Biomaterials, 27, 714 – 723.
dc.identifier.citedreferenceLaronda, M. M., Duncan, F. E., Hornick, J. E., Xu, M., Pahnke, J. E., Whelan, K. A., … Woodruff, T. K. ( 2014 ). Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. Journal of Assisted Reproduction and Genetics, 31, 1013 – 1028.
dc.identifier.citedreferenceLudwig, B., Reichel, A., Steffen, A., Zimerman, B., Schally, A. V., Block, N. L., … Bornstein, S. R. ( 2013 ). Transplantation of human islets without immunosuppression. Proceedings of the National Academy of Sciences of the United States of America, 110, 1 – 5.
dc.identifier.citedreferenceLuyckx, V., Dolmans, M.‐M., Vanacker, J., Legat, C., Fortuño Moya, C., Donnez, J., & Amorim, C. A. ( 2014 ). A new step toward the artificial ovary: Survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertility and Sterility, 101, 1149 – 1156.
dc.identifier.citedreferenceMeirow, D., Ra, H., & Biderman, H. ( 2014 ). Ovarian tissue cryopreservation and transplantation: A realistic, effective technology for fertility preservation. Human fertility, methods and protocols (p. 1154). New York, NY: Humana Press. http://link.springer.com/10.1007/978‐1‐4939‐0659‐8.
dc.identifier.citedreferenceOktay, K., Economos, K., Kan, M., Rucinski, J., Veeck, L., & Rosenwaks, Z. ( 2001 ). Endocrine function and oocyte retrieval after autologous transplantation of ovarian cortical strips to the forearm. The Journal of the American Medical Association, 286, 1490 – 1493.
dc.identifier.citedreferenceOktay, K., Buyuk, E., Veeck, L., Zaninovic, N., Xu, K., Takeuchi, T., … Rosenwaks, Z. ( 2004 ). Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet, 363, 837 – 840.
dc.identifier.citedreferencePapavasiliou, G., Sokic, S., & Turturro, M. ( 2012 ). Synthetic PEG hydrogels as extracellular matrix mimics for tissue engineering applications, Biotechnology: Molecular Studies and Novel Applications for Improved Quality of Human Life ( 111 – 135 ). London, United Kingdom: InTech Open.
dc.identifier.citedreferenceQi, M. ( 2014 ). Transplantation of encapsulated pancreatic islets as a treatment for patients with type 1 diabetes mellitus. Advances in Medicine, 2014, 1 – 15.
dc.identifier.citedreferenceRosendahl, M., Greve, T., & Andersen, C. Y. ( 2013 ). The safety of transplanting cryopreserved ovarian tissue in cancer patients: A review of the literature. Journal of Assisted Reproduction and Genetics, 30, 11 – 24.
dc.identifier.citedreferenceSalama, M., & Woodruff, T. K. ( 2015 ). New advances in ovarian autotransplantation to restore fertility in cancer patients. Cancer Metastasis Reviews, 34, 807 – 822.
dc.identifier.citedreferenceScharp, D. W., & Marchetti, P. ( 2013 ). Encapsulated islets for diabetes therapy: History, current progress, and critical issues requiring solution. Advanced Drug Delivery Reviews, 67–68, 35 – 73.
dc.identifier.citedreferenceShea, L. D., Woodruff, T. K., & Shikanov, A. ( 2014 ). Bioengineering the ovarian follicle microenvironment. Annual Review of Biomedical Engineering, 16, 29 – 52.
dc.identifier.citedreferenceShikanov, A., Ph, D., Zhang, Z., Xu, M., Smith, R. M., Rajan, A., … Shea, L. D. ( 2011 ). Fibrin encapsulation and vascular endothelial growth factor delivery promotes ovarian graft survival in mice. Tissue Engineering. Part A, 17, 3095 – 3104.
dc.identifier.citedreferenceShikanov, A., Smith, R. M., Xu, M., Woodruff, T. K., & Shea, L. D. ( 2011 ). Hydrogel network design using multifunctional macromers to coordinate tissue maturation in ovarian follicle culture. Biomaterials, 32, 2524 – 2531.
dc.identifier.citedreferenceShikanov, A., Zhang, Z., Xu, M., Smith, R. M., Rajan, A., Woodruff, T. K., & Shea, L. D. ( 2011 ). Fibrin encapsulation and vascular endothelial growth factor delivery promotes ovarian graft survival in mice. Tissue Engineering. Part A, 17, 3095 – 3104.
dc.identifier.citedreferenceSmith, R. M., Shikanov, A., Kniazeva, E., Ramadurai, D., Woodruff, T. K., & Shea, L. D. ( 2014 ). Fibrin‐mediated delivery of an ovarian follicle pool in a mouse model of infertility. Tissue Engineering. Part A, 20, 3021 – 3030.
dc.identifier.citedreferenceSoares, M., Sahrari, K., Amorim, C. A., Saussoy, P., Donnez, J., & Dolmans, M.‐M. ( 2015 ). Evaluation of a human ovarian follicle isolation technique to obtain disease‐free follicle suspensions before safely grafting to cancer patients. Fertility and Sterility, 104, 672 – 680. e2.
dc.identifier.citedreferenceTelfer, E. E., & Zelinski, M. B. ( 2013 ). Ovarian follicle culture: Advances and challenges for human and nonhuman primates. Fertility and Sterility, 99, 1523 – 1533.
dc.identifier.citedreferenceWallace, W. H. B., Kelsey, T. W., & Anderson, R. A. ( 2016 ). Fertility preservation in pre‐pubertal girls with cancer: The role of ovarian tissue cryopreservation. Fertility and Sterility, 105, 6 – 12.
dc.identifier.citedreferenceWallace, W. H. B., Shalet, S. M., Hendry, J. H., Morris‐Jones, P. H., & Gattamaneni, H. R. ( 1989 ). Ovarian failure following abdominal irradiation in childhood: The radiosensitivity of the human oocyte. The British Journal of Radiology, 62, 995 – 998.
dc.identifier.citedreferenceWalls, M., Junk, S., Ryan, J. P., & Hart, R. ( 2018 ). IVF versus ICSI for the fertilization of in‐vitro matured human oocytes. Reproductive Biomedicine Online, 25, 603 – 607.
dc.identifier.citedreferenceWest, E., Xu, M., Woodruff, T., & Shea, L. ( 2007 ). Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials, 28, 4439 – 4448.
dc.identifier.citedreferenceWo, J. Y., & Viswanathan, A. N. ( 2009 ). Impact of radiotherapy on fertility, pregnancy, and neonatal outcomes in female cancer patients. International Journal of Radiation Oncology, Biology, Physics, 73, 1304 – 1312.
dc.identifier.citedreferenceXiao, S., Duncan, F. E., Bai, L., Nguyen, C. T., Shea, L. D., & Woodruff, T. K. ( 2015 ). Size‐specific follicle selection improves mouse oocyte reproductive outcomes. Reproduction, 150, 183 – 192.
dc.identifier.citedreferenceXiao, S., Zhang, J., Romero, M. M., Smith, K. N., Shea, L. D., & Woodruff, T. K. ( 2015 ). In vitro follicle growth supports human oocyte meiotic maturation. Scientific Reports, 5, 17323. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4661442&tool=pmcentrez&rendertype=abstract.
dc.identifier.citedreferenceXu, M., Banc, A., Woodruff, T. K., & Shea, L. D. ( 2009 ). Secondary follicle growth and oocyte maturation by culture in alginate hydrogel following cryopreservation of the ovary or individual follicles. Biotechnology and Bioengineering, 103, 378 – 386.
dc.identifier.citedreferenceXu, M., Kreeger, P. K., Shea, L. D., & Woodruff, T. K. ( 2006 ). Tissue‐engineered follicles produce live, fertile offspring. Tissue Engineering, 12, 2739 – 2746.
dc.identifier.citedreferenceYang, H. Y., Cox, S. ‐L., Jenkin, G., Findlay, J., Trounson, A., & Shaw, J. ( 2006 ). Graft site and gonadotrophin stimulation influences the number and quality of oocytes from murine ovarian tissue grafts. Reproduction, 131, 851 – 859.
dc.identifier.citedreferenceZheng, W., Zhang, H., Gorre, N., Risal, S., Shen, Y., & Liu, K. ( 2014 ). Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions. Human Molecular Genetics, 23, 920 – 928.
dc.identifier.citedreferenceAbir, R., Aviram, A., Feinmesser, M., Stein, J., Yaniv, I., Parnes, D., … Fisch, B. ( 2014 ). Ovarian minimal residual disease in chronic myeloid leukaemia. Reproductive Biomedicine Online, 28, 255 – 260.
dc.identifier.citedreferenceAmerican Cancer Society ( 2014 ). Cancer Treatment & Survivorship Facts & Figures 2014–2015. Atlanta, GA: American Cancer Society.
dc.identifier.citedreferenceAmerican Cancer Society ( 2017 ). Cancer Facts and Figures. Atlanta, GA: American Cancer Society. https://old.cancer.org/acs/groups/content/@editorial/documents/document/acspc‐048738.pdf.
dc.identifier.citedreferenceBrito, I. R., Lima, I. M. T., Xu, M., Shea, L. D., Woodruff, T. K., & Figueiredo, R. ( 2014 ). Three‐dimensional systems for in vitro follicular culture: Overview of alginate‐based matrices. Reproduction, Fertility, and Development, 26, 915 – 930.
dc.identifier.citedreferenceCamboni, A, Van Langendonckt, A., Donnez, J., Vanacker, J., Dolmans, M. M., & Amorim, C. A ( 2013 ). Alginate beads as a tool to handle, cryopreserve and culture isolated human primordial/primary follicles. Cryobiology, 67, 64 – 69.
dc.identifier.citedreferenceDavid, A., Day, J. R., Cichon, A. L., Lefferts, A., Cascalho, M., & Shikanov, A. ( 2017 ). Restoring ovarian endocrine function with encapsulated ovarian allograft in immune competent mice. Annals of Biomedical Engineering, 45, 1685 – 1696.
dc.identifier.citedreferenceDemeestere, I., Simon, P., Emiliani, S., Delbaere, A, & Englert, Y. ( 2009 ). Orthotopic and heterotopic ovarian tissue transplantation. Human Reproduction Update, 15, 649 – 665.
dc.identifier.citedreferenceDemeestere, I., Simon, P., Buxant, F., Robin, V., Fernandez, S. A., Centner, J., … Englert, Y. ( 2006 ). Ovarian function and spontaneous pregnancy after combined heterotopic and orthotopic cryopreserved ovarian tissue transplantation in a patient previously treated with bone marrow transplantation: Case report. Human Reproduction, 21, 2010 – 2014.
dc.identifier.citedreferenceDolmans, M.‐M., Luyckx, V., Donnez, J., Andersen, C. Y., & Greve, T. ( 2013 ). Risk of transferring malignant cells with transplanted frozen‐thawed ovarian tissue. Fertility and Sterility, 99, 1514 – 1522.
dc.identifier.citedreferenceDonnez, J., & Dolmans, M.‐M. ( 2015 ). Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. Journal of Assisted Reproduction and Genetics, 32, 1167 – 1170.
dc.identifier.citedreferenceDonnez, J., Dolmans, M. ‐M., Pellicer, A., Diaz‐Garcia, C., Sanchez Serrano, M., Schmidt, K. T., … Andersen, C. Y. ( 2013 ). Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: A review of 60 cases of reimplantation. Fertility and Sterility, 99, 1503 – 1513.
dc.identifier.citedreferenceDonnez, J., Squifflet, J., & Dolmans, M.‐M. ( 2009 ). Frozen‐thawed ovarian tissue retransplants. Seminars in Reproductive Medicine, 27, 472 – 478.
dc.identifier.citedreferenceDonnez, J., Squifflet, J., Jadoul, P., Demylle, D., Cheron, A. C., Van Langendonckt, A., & Dolmans, M. M. ( 2011 ). Pregnancy and live birth after autotransplantation of frozen‐thawed ovarian tissue in a patient with metastatic disease undergoing chemotherapy and hematopoietic stem cell transplantation. Fertility and Sterility, 95, 36 – 39.
dc.identifier.citedreferenceDrummond, A. E. ( 2006 ). The role of steroids in follicular growth. Reproductive Biology and Endocrinology, 4, 16. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459164/.
dc.identifier.citedreferenceEllenbogen, A., Shavit, T., & Shalom‐Paz, E. ( 2014 ). IVM results are comparable and may have advantages over standard IVF. Facts, Views Vision in ObGyn, 6, 77 – 80.
dc.identifier.citedreferenceFabbri, R., Macciocca, M., Vicenti, R., Pasquinelli, G., Caprara, G., Valente, S., … Paradisi, R. ( 2016 ). Long‐term storage does not impact the quality of cryopreserved human ovarian tissue. Journal of Ovarian Research, 9, 1 – 10.
dc.identifier.citedreferenceFilatov, M. A., Khramova, Y. V., & Semenova, M. L. ( 2014 ). In vitro mouse ovarian follicle growth and maturation in alginate hydrogel: Current state of the art. Acta Naturae, 7, 48 – 56.
dc.identifier.citedreferenceHornick, J. E., Duncan, F. E., Shea, L. D., & Woodruff, T. K. ( 2012 ). Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Human Reproduction, 27, 1801 – 1810.
dc.identifier.citedreferenceHornick, J. E., Duncan, F. E., Shea, L. D., & Woodruff, T. K. ( 2013 ). Multiple follicle culture supports primary follicle growth through paracrine‐acting signals. Reproduction, 145, 19 – 32.
dc.identifier.citedreferenceImbert, R., Moffa, F., Tsepelidis, S., Simon, P., Delbaere, A., Devreker, F., … Demeestere, I. ( 2014 ). Safety and usefulness of cryopreservation of ovarian tissue to preserve fertility: A 12‐year retrospective analysis. Human Reproduction, 29, 1931 – 1940.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.