Show simple item record

Sodium‐Doped Tin Sulfide Single Crystal: A Nontoxic Earth‐Abundant Material with High Thermoelectric Performance

dc.contributor.authorWu, Hong
dc.contributor.authorLu, Xu
dc.contributor.authorWang, Guoyu
dc.contributor.authorPeng, Kunling
dc.contributor.authorChi, Hang
dc.contributor.authorZhang, Bin
dc.contributor.authorChen, Yongjin
dc.contributor.authorLi, Chengjun
dc.contributor.authorYan, Yanci
dc.contributor.authorGuo, Lijie
dc.contributor.authorUher, Ctirad
dc.contributor.authorZhou, Xiaoyuan
dc.contributor.authorHan, Xiaodong
dc.date.accessioned2018-08-13T18:50:39Z
dc.date.available2019-09-04T20:15:38Zen
dc.date.issued2018-07
dc.identifier.citationWu, Hong; Lu, Xu; Wang, Guoyu; Peng, Kunling; Chi, Hang; Zhang, Bin; Chen, Yongjin; Li, Chengjun; Yan, Yanci; Guo, Lijie; Uher, Ctirad; Zhou, Xiaoyuan; Han, Xiaodong (2018). "Sodium‐Doped Tin Sulfide Single Crystal: A Nontoxic Earth‐Abundant Material with High Thermoelectric Performance." Advanced Energy Materials 8(20): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/145294
dc.description.abstractLead‐free tin sulfide (SnS), with an analogous structure to SnSe, has attracted increasing attention because of its theoretically predicted high thermoelectric performance. In practice, however, polycrystalline SnS performs rather poorly as a result of its low power factor. In this work, bulk sodium (Na)‐doped SnS single crystals are synthesized using a modified Bridgman method and a detailed transport evaluation is conducted. The highest zT value of ≈1.1 is reached at 870 K in a 2 at% Na‐doped SnS single crystal along the b‐axis direction, in which high power factors (2.0 mW m−1 K−2 at room temperature) are realized. These high power factors are attributed to the high mobility associated with the single crystalline nature of the samples as well as to the enhanced carrier concentration achieved through Na doping. An effective single parabolic band model coupled with first‐principles calculations is used to provide theoretical insight into the electronic transport properties. This work demonstrates that SnS‐based single crystals composed of earth‐abundant, low‐cost, and nontoxic chemical elements can exhibit high thermoelectric performance and thus hold potential for application in the area of waste heat recovery.Large size Sn1−xNaxS single crystals were firstly obtained using a modified Bridgman method. The multiple band feature along with the single crystalline nature favors a large power factor, leading to the highest dimensionless figure of merit (zT) of ~1.1 at 870 K for 2 at% Na‐doped SnS single crystal along the b‐axis, which is one of the best results for thermoelectric sulfides to date.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherelectronic structure
dc.subject.otherSnS single crystal
dc.subject.otherSPB model
dc.subject.otherthermoelectrics
dc.titleSodium‐Doped Tin Sulfide Single Crystal: A Nontoxic Earth‐Abundant Material with High Thermoelectric Performance
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145294/1/aenm201800087_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145294/2/aenm201800087-sup-0001-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145294/3/aenm201800087.pdf
dc.identifier.doi10.1002/aenm.201800087
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceQ. Tan, L. D. Zhao, J. F. Li, C. F. Wu, T. R. Wei, Z. B. Xing, M. G. Kanatzidis, J. Mater. Chem. A 2014, 2, 17302.
dc.identifier.citedreferenceJ. Yang, L. L. Xi, W. J. Qiu, L. H. Wu, X Shi, L. D. Chen, J. H. Yang, W. Q. Zhang, C. Uher, D. J. Singh, npj Comput. Mater. 2016, 2, 15015.
dc.identifier.citedreferenceL. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature 2014, 508, 373.
dc.identifier.citedreferenceK. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang, X. Zhou, Energy Environ. Sci. 2016, 9, 454.
dc.identifier.citedreferenceT. Duong, V. Q. Nguyen, G. Duvjir, V. T. Duong, S. Kwon, J. Y. Song, J. K. Lee, J. E. Lee, S. Park, T. Min, J. Lee, J. Kim, S. Cho, Nat. Commun. 2016, 7, 13713.
dc.identifier.citedreferenceL. D. Zhao, G. J. Tan, S. Q. Hao, J. Q. He, Y. L. Pei, H. Chi, H. Wang, S. K. Gong, H. B. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, Science 2016, 351, 141.
dc.identifier.citedreferenceK. L. Peng, B. Zhang, H Wu, X. L. Cao, A. Li, D. F. Yang, X. Lu, G. Y. Wang, X. D. Han, C. Uher, X. Y. Zhou, Mater. Today, https://doi.org/10.1016/j.mattod.2017.11.005.
dc.identifier.citedreferenceJ. S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim, G. Kotliar, Nature 2009, 459, 965.
dc.identifier.citedreferenceR. Guo, X. Wang, Y. Kuang, B. Huang, Phys. Rev. B 2015, 92, 115202.
dc.identifier.citedreferenceB. Z. Sun, Z. Ma, C. He, K. Wu, RSC Adv. 2015, 5, 56382.
dc.identifier.citedreferenceB. Zhou, S. Li, W. Li, J. Li, X. Zhang, S. Lin, Z. Chen, Y. Pei, ACS Appl. mater. Interfaces 2017, 9, 34033.
dc.identifier.citedreferenceS. Hao, V. P. Dravid, M. G. Kanatzidis, C. Wolverton, APL Mater. 2016, 4, 104505.
dc.identifier.citedreferenceG. K. H. Madsen, D. J. Singh, Phys. Commun. 2006, 175, 67.
dc.identifier.citedreferenceG. Ding, G. Gao, K. Yao, Sci. Rep. 2015, 5, 9567.
dc.identifier.citedreferenceL. D. Zhao, J. He, S. Hao, C. I. Wu, T. P. Hogan, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc. 2012, 134, 16327.
dc.identifier.citedreferenceG. Tan, L. D. Zhao, M. G. Kanatzidis, Chem. Rev. 2016, 116, 12123.
dc.identifier.citedreferenceL. Yang, Z. G. Chen, M. S. Dargusch, J. Zou, Adv. Electron. Mater. 2017, 8, 1701797.
dc.identifier.citedreferenceX. Lu, D. T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, C. Uher, Adv. Energy Mater. 2013, 3, 342.
dc.identifier.citedreferenceY. Yang, P. Ying, J. Wang, X. Liu, Z. Du, Y. Chao, J. Cui, J. Mater. Chem. A 2017, 5, 18808.
dc.identifier.citedreferenceH. W. Zhao, X. X. Xu, C. Li, R. M Tian, R. Z. Zhang, R. Huang, Y. Lu, D. X. Li, X. H. Hu, L. Pan, Y. F. Wang, J. Mater. Chem. A 2017, 5, 23267.
dc.identifier.citedreferenceG. Tan, S. Hao, J. Zhao, C. Wolverton, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 6467.
dc.identifier.citedreferenceK. Biswas, L. D. Zhao, M. G. Kanatzidis, Adv. Energy Mater. 2012, 2, 634.
dc.identifier.citedreferenceE. Guilmeau, Y. Bréard, A. Maignan, Appl. Phys. Lett. 2011, 99, 052107.
dc.identifier.citedreferenceK. L. Peng, H. Wu, Y. C. Yan, L. J. Guo, G. Y. Wang, X. Lu, X. Y. Zhou, J. Mater. Chem. A 2017, 5, 14053.
dc.identifier.citedreferenceAsfandiyar, T. R. Wei, Z. Li, F. H. Sun, Y. Pan, C. F. Wu, M. U. Farooq, H. Tang, F. Li, B. Li, J. F. Li, Sci. Rep. 2017, 7, 43262.
dc.identifier.citedreferenceM. M. Nassary, J. Alloys Compd. 2005, 398, 21.
dc.identifier.citedreferenceW. Albers, C. Haas, F. van der Maesen, J. Phys. Chem. Solids 1960, 15, 306.
dc.identifier.citedreferenceG. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.
dc.identifier.citedreferenceG. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
dc.identifier.citedreferenceJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
dc.identifier.citedreferenceL. E. Bell, Science 2008, 321, 1457.
dc.identifier.citedreferenceM. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, P. Gogna, Adv. Mater. 2007, 19, 1043.
dc.identifier.citedreferenceJ. P. Heremans, M. S. Dresselhaus, L. E. Bell, D. T. Morelli, Nat. Nanotechnol. 2013, 8, 471.
dc.identifier.citedreferenceX. Lu, D. T. Morelli, Y. Wang, W. Lai, Y. Xia, V. Ozolins, Chem. Mater. 2016, 28, 1781.
dc.identifier.citedreferenceQ. Tan, J. F. Li, J. Electron. Mater. 2014, 43, 2435.
dc.identifier.citedreferenceG. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105.
dc.identifier.citedreferenceT. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, X. Zhao, Adv. Mater. 2017, 29, 1605884.
dc.identifier.citedreferenceM. Zhou, G. J. Snyder, L. Li, L. D. Zhao, Inorg. Chem. Front. 2016, 3, 1449.
dc.identifier.citedreferenceK. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Science 2004, 303, 818.
dc.identifier.citedreferenceJ. P. Heremans, C. M. Thrush, D. T. Morelli, Phys. Rev. B 2004, 70, 115334.
dc.identifier.citedreferenceO. Falkenbach, J. Tinz, A. S. Schulze, E. Mueller, S. Schlecht, Phys. Status Solidi A 2016, 213, 699.
dc.identifier.citedreferenceZ. W. Chen, B. H. Ge, W. Li, S. Q. Lin, J. W. Shen, Y. J. Chang, R. Hanus, G. J. Snyder, Y. Z. Pei, Nat. Commun. 2017, 8, 13828.
dc.identifier.citedreferenceS. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, Science 2015, 348, 109.
dc.identifier.citedreferenceJ. D. Wasscher, W. Albers, C. Haas, Solid‐State Electron. 1963, 6, 261.
dc.identifier.citedreferenceS. Q. Lin, W. Li, X. Y. Zhang, J. Li, Z. W. Chen, Y. Z. Pei, Inorg. Chem. Front. 2017, 4, 1066.
dc.identifier.citedreferenceY. Pei, L. Zheng, W. Li, S. Lin, Z. Chen, Y. Wang, X. Xu, H. Yu, Y. Chen, B. Ge, Adv. Electron. Mater. 2016, 2, 1600019.
dc.identifier.citedreferenceW. Yao, D. Yang, Y. Yan, K. Peng, H. Zhan, A. Liu, X. Lu, G. Wang, X. Zhou, ACS Appl. Mater. Interfaces 2017, 9, 10595.
dc.identifier.citedreferenceM. D. Nielsen, V. Ozolins, J. P. Heremans, Energy Environ. Sci. 2013, 6, 570.
dc.identifier.citedreferenceD. Yang, W. Yao, Y. Yan, W. Qiu, L. Guo, X. Lu, C. Uher, X. Han, G. Wang, T. Yang, X. Zhou, NPG Asia Mater. 2017, 9, e387.
dc.identifier.citedreferenceD. Yang, W. Yao, Q. Chen, K. Peng, P. Jiang, X. Lu, C. Uher, T. Yang, G. Wang, X. Zhou, Chem. Mater. 2016, 28, 1611.
dc.identifier.citedreferenceY. Z. Pei, A. D. LaLonde, N. A. Heinz, X. Y. Shi, S. Iwanaga, H. Wang, L. D. Chen, G. J. Snyder, Adv. Mater. 2011, 23, 5674.
dc.identifier.citedreferenceS. Bhattacharya, N. S. Gunda, R. Stern, S. Jacobs, R. Chmielowski, G. Dennler, G. K. H. Madsen, Phys. Chem. Chem. Phys. 2015, 17, 9161.
dc.identifier.citedreferenceY. Z. Pei, X. Y. Shi, A. LaLonde, H. Wang, L. D. Chen, G. J. Snyder, Nature 2011, 473, 66.
dc.identifier.citedreferenceX. Lu, W. Yao, G. Wang, X. Zhou, D. Morelli, Y. Zhang, H. Chi, S. Hui, C. Uher, J. Mater. Chem. A 2016, 4, 170963.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.