Show simple item record

Mutations in VPS13D lead to a new recessive ataxia with spasticity and mitochondrial defects

dc.contributor.authorSeong, Eunju
dc.contributor.authorInsolera, Ryan
dc.contributor.authorDulovic, Marija
dc.contributor.authorKamsteeg, Erik‐jan
dc.contributor.authorTrinh, Joanne
dc.contributor.authorBrüggemann, Norbert
dc.contributor.authorSandford, Erin
dc.contributor.authorLi, Sheng
dc.contributor.authorOzel, Ayse Bilge
dc.contributor.authorLi, Jun Z.
dc.contributor.authorJewett, Tamison
dc.contributor.authorKievit, Anneke J. A.
dc.contributor.authorMünchau, Alexander
dc.contributor.authorShakkottai, Vikram
dc.contributor.authorKlein, Christine
dc.contributor.authorCollins, Catherine A.
dc.contributor.authorLohmann, Katja
dc.contributor.authorWarrenburg, Bart P.
dc.contributor.authorBurmeister, Margit
dc.date.accessioned2018-08-13T18:50:56Z
dc.date.available2019-08-01T19:53:23Zen
dc.date.issued2018-06
dc.identifier.citationSeong, Eunju; Insolera, Ryan; Dulovic, Marija; Kamsteeg, Erik‐jan ; Trinh, Joanne; Brüggemann, Norbert ; Sandford, Erin; Li, Sheng; Ozel, Ayse Bilge; Li, Jun Z.; Jewett, Tamison; Kievit, Anneke J. A.; Münchau, Alexander ; Shakkottai, Vikram; Klein, Christine; Collins, Catherine A.; Lohmann, Katja; Warrenburg, Bart P.; Burmeister, Margit (2018). "Mutations in VPS13D lead to a new recessive ataxia with spasticity and mitochondrial defects." Annals of Neurology 83(6): 1075-1088.
dc.identifier.issn0364-5134
dc.identifier.issn1531-8249
dc.identifier.urihttps://hdl.handle.net/2027.42/145306
dc.publisherWiley Periodicals, Inc.
dc.titleMutations in VPS13D lead to a new recessive ataxia with spasticity and mitochondrial defects
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPsychiatry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145306/1/ana25220_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145306/2/ana25220.pdf
dc.identifier.doi10.1002/ana.25220
dc.identifier.sourceAnnals of Neurology
dc.identifier.citedreferencePfundt R, Del Rosario M, Vissers L, et al. Detection of clinically relevant copyâ number variants by exome sequencing in a large cohort of genetic disorders. Genet Med 2017; 19: 667 â 675.
dc.identifier.citedreferencePetrovski S, Gussow AB, Wang Q, et al. The intolerance of regulatory sequence to genetic variation predicts gene dosage sensitivity. PLoS Genet 2015; 11: e1005492.
dc.identifier.citedreferenceDobsonâ Stone C, Velayosâ Baeza A, Jansen A, et al. Identification of a VPS13A founder mutation in French Canadian families with choreaâ acanthocytosis. Neurogenetics 2005; 6: 151 â 158.
dc.identifier.citedreferenceHennies HC, Rauch A, Seifert W, et al. Allelic heterogeneity in the COH1 gene explains clinical variability in Cohen syndrome. Am J Hum Genet 2004; 75: 138 â 145.
dc.identifier.citedreferenceKatzaki E, Pescucci C, Uliana V, et al. Clinical and molecular characterization of Italian patients affected by Cohen syndrome. J Hum Genet 2007; 52: 1011 â 1017.
dc.identifier.citedreferenceKolehmainen J, Wilkinson R, Lehesjoki AE, et al. Delineation of Cohen syndrome following a largeâ scale genotypeâ phenotype screen. Am J Hum Genet 2004; 75: 122 â 127.
dc.identifier.citedreferenceSeifert W, Holderâ Espinasse M, Kuhnisch J, et al. Expanded mutational spectrum in Cohen syndrome, tissue expression, and transcript variants of COH1. Hum Mutat 2009; 30: E404 â E420.
dc.identifier.citedreferenceSeifert W, Holderâ Espinasse M, Spranger S, et al. Mutational spectrum of COH1 and clinical heterogeneity in Cohen syndrome. J Med Genet 2006; 43: e22.
dc.identifier.citedreferenceLesage S, Drouet V, Majounie E, et al. Loss of VPS13C function in autosomalâ recessive parkinsonism causes mitochondrial dysfunction and increases PINK1/Parkinâ dependent mitophagy. Am J Hum Genet 2016; 98: 500 â 513.
dc.identifier.citedreferenceSchormair B, Kemlink D, Mollenhauer B, et al. Diagnostic exome sequencing in earlyâ onset Parkinson’s disease confirms VPS13C as a rare cause of autosomalâ recessive Parkinson’s disease. Clin Genet 2018; 93: 603 â 612.
dc.identifier.citedreferenceDietzl G, Chen D, Schnorrer F, et al. A genomeâ wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 2007; 448: 151 â 156.
dc.identifier.citedreferenceBaloh RH. Mitochondrial dynamics and peripheral neuropathy. Neuroscientist 2008; 14: 12 â 18.
dc.identifier.citedreferenceYu Y, Lee HC, Chen KC, et al. Inner membrane fusion mediates spatial distribution of axonal mitochondria. Sci Rep 2016; 6: 18981.
dc.identifier.citedreferencePosey JE, Harel T, Liu P, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med 2017; 376: 21 â 31.
dc.identifier.citedreferenceCarelli V, Sabatelli M, Carrozzo R, et al. â Behr syndromeâ with OPA1 compound heterozygote mutations. Brain 2015; 138 ( pt 1 ): e321.
dc.identifier.citedreferencede Bot ST, Willemsen MA, Vermeer S, et al. Reviewing the genetic causes of spasticâ ataxias. Neurology 2012; 79: 1507 â 1514.
dc.identifier.citedreferencevan Gassen KL, van der Heijden CD, de Bot ST, et al. Genotypeâ phenotype correlations in spastic paraplegia type 7: a study in a large Dutch cohort. Brain 2012; 135 ( pt 10 ): 2994 â 3004.
dc.identifier.citedreferenceDemain LA, Conway GS, Newman WG. Genetics of mitochondrial dysfunction and infertility. Clin Genet 2017; 91: 199 â 207.
dc.identifier.citedreferenceTomiyasu A, Nakamura M, Ichiba M, et al. Novel pathogenic mutations and copy number variations in the VPS13A gene in patients with choreaâ acanthocytosis. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 620 â 631.
dc.identifier.citedreferenceBalikova I, Lehesjoki AE, de Ravel TJ, et al. Deletions in the VPS13B (COH1) gene as a cause of Cohen syndrome. Hum Mutat 2009; 30: E845 â E854.
dc.identifier.citedreferenceMegarbane A, Slim R, Nurnberg G, et al. A novel VPS13B mutation in two brothers with Cohen syndrome, cutis verticis gyrata and sensorineural deafness. Eur J Hum Genet 2009; 17: 1076 â 1079.
dc.identifier.citedreferenceExome Aggregation Consortium. ExAC browser. Updated January 16, 2015. accessed December 2017 Available at: http://exac.broadinstitute.org.
dc.identifier.citedreferenceChun BY, Rizzo JF III. Dominant optic atrophy: updates on the pathophysiology and clinical manifestations of the optic atrophy 1 mutation. Curr Opin Ophthalmol 2016; 27: 475 â 480.
dc.identifier.citedreferenceJasoliya MJ, McMackin MZ, Henderson CK, et al. Frataxin deficiency impairs mitochondrial biogenesis in cells, mice and humans. Hum Mol Genet 2017; 26: 2627 â 2633.
dc.identifier.citedreferencePierson TM, Adams D, Bonn F, et al. Wholeâ exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxiaâ neuropathy syndrome linked to mitochondrial mâ AAA proteases. PLoS Genet 2011; 7: e1002325.
dc.identifier.citedreferenceFinsterer J. Ataxias with autosomal, Xâ chromosomal or maternal inheritance. Can J Neurol Sci 2009; 36: 409 â 428.
dc.identifier.citedreferenceShanmughapriya S, Rajan S, Hoffman NE, et al. SPG7 is an essential and conserved component of the mitochondrial permeability transition pore. Mol Cell 2015; 60: 47 â 62.
dc.identifier.citedreferenceBargiela D, Shanmugarajah P, Lo C, et al. Mitochondrial pathology in progressive cerebellar ataxia. Cerebellum Ataxias 2015; 2: 16.
dc.identifier.citedreferenceHayashi G, Cortopassi G. Oxidative stress in inherited mitochondrial diseases. Free Radic Biol Med 2015; 88 ( pt A ): 10 â 17.
dc.identifier.citedreferenceAnding AL, Wang C, Chang TK, et al. Vps13D Encodes a Ubiquitinâ Binding Protein that Is Required for the Regulation of Mitochondrial Size and Clearance. Curr Biol 2018; 28: 287 â 295.e6.
dc.identifier.citedreferenceKim M, Sandford E, Gatica D, et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. Elife 2016;5.
dc.identifier.citedreferenceSandford E, Burmeister M. Genes and genetic testing in hereditary ataxias. Genes (Basel) 2014; 5: 586 â 603.
dc.identifier.citedreferenceBeaudin M, Klein CJ, Rouleau GA, Dupre N. Systematic review of autosomal recessive ataxias and proposal for a classification. Cerebellum Ataxias 2017; 4: 3.
dc.identifier.citedreferenceMarras C, Lang A, van de Warrenburg BP, et al. Nomenclature of genetic movement disorders: recommendations of the International Parkinson and Movement Disorder Society task force. Mov Disord 2017; 32: 724 â 725.
dc.identifier.citedreferenceFogel BL, Lee H, Deignan JL, et al. Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol 2014; 71: 1237 â 1246.
dc.identifier.citedreferenceSynofzik M, Schule R. Overcoming the divide between ataxias and spastic paraplegias: shared phenotypes, genes, and pathways. Mov Disord 2017; 32: 332 â 345.
dc.identifier.citedreferenceSwartz BE, Burmeister M, Somers JT, et al. A form of inherited cerebellar ataxia with saccadic intrusions, increased saccadic speed, sensory neuropathy, and myoclonus. Ann N Y Acad Sci 2002; 956: 441 â 444.
dc.identifier.citedreferenceSwartz BE, Li S, Bespalova I, et al. Pathogenesis of clinical signs in recessive ataxia with saccadic intrusions. Ann Neurol 2003; 54: 824 â 828.
dc.identifier.citedreferenceSobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat 2015; 36: 928 â 930.
dc.identifier.citedreferenceAbecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlinâ rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97 â 101.
dc.identifier.citedreferenceTrujillano D, Bertoliâ Avella AM, Kumar Kandaswamy K, et al. Clinical exome sequencing: results from 2819 samples reflecting 1000 families. Eur J Hum Genet 2017; 25: 176 â 182.
dc.identifier.citedreferencevan de Warrenburg BP, Schouten MI, de Bot ST, et al. Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel geneâ disease associations and unanticipated rare disorders. Eur J Hum Genet 2016; 24: 1460 â 1466.
dc.identifier.citedreferenceDesmet FO, Hamroun D, Lalande M, et al. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 2009; 37: e67.
dc.identifier.citedreferenceSchindelin J, Argandaâ Carreras I, Frise E, et al. Fiji: an openâ source platform for biologicalâ image analysis. Nat Methods 2012; 9: 676 â 682.
dc.identifier.citedreferenceGrunewald A, Voges L, Rakovic A, et al. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts. PLoS One 2010; 5: e12962.
dc.identifier.citedreferencePilling AD, Horiuchi D, Lively CM, Saxton WM. Kinesinâ 1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 2006; 17: 2057 â 2068.
dc.identifier.citedreferenceKlinedinst S, Wang X, Xiong X, et al. Independent pathways downstream of the Wnd/DLK MAPKKK regulate synaptic structure, axonal transport, and injury signaling. J Neurosci 2013; 33: 12764 â 12778.
dc.identifier.citedreferenceMyers MD, Payne GS. Vps13 and Cdc31/centrin: puzzling partners in membrane traffic. J Cell Biol 2017; 216: 299 â 301.
dc.identifier.citedreferenceVelayosâ Baeza A, Vettori A, Copley RR, et al. Analysis of the human VPS13 gene family. Genomics 2004; 84: 536 â 549.
dc.identifier.citedreferenceVonk JJ, Yeshaw WM, Pinto F, et al. Drosophila Vps13 is required for protein homeostasis in the brain. PLoS One 2017; 12: e0170106.
dc.identifier.citedreferenceTomemori Y, Ichiba M, Kusumoto A, et al. A geneâ targeted mouse model for choreaâ acanthocytosis. J Neurochem 2005; 92: 759 â 766.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.