Show simple item record

A single amino acid substitution in the R3 domain of GLABRA1 leads to inhibition of trichome formation in Arabidopsis without affecting its interaction with GLABRA3

dc.contributor.authorDai, Xuemei
dc.contributor.authorZhou, Limei
dc.contributor.authorZhang, Wei
dc.contributor.authorCai, Ling
dc.contributor.authorGuo, Hongyan
dc.contributor.authorTian, Hainan
dc.contributor.authorSchiefelbein, John
dc.contributor.authorWang, Shucai
dc.date.accessioned2018-08-13T18:51:02Z
dc.date.available2018-08-13T18:51:02Z
dc.date.issued2016-04
dc.identifier.citationDai, Xuemei; Zhou, Limei; Zhang, Wei; Cai, Ling; Guo, Hongyan; Tian, Hainan; Schiefelbein, John; Wang, Shucai (2016). "A single amino acid substitution in the R3 domain of GLABRA1 leads to inhibition of trichome formation in Arabidopsis without affecting its interaction with GLABRA3." Plant, Cell & Environment 39(4): 897-907.
dc.identifier.issn0140-7791
dc.identifier.issn1365-3040
dc.identifier.urihttps://hdl.handle.net/2027.42/145310
dc.description.abstractGLABRA1 (GL1) is an R2R3 MYB transcription factor that regulates trichome formation in Arabidopsis by interacting with the bHLH transcription factor GLABRA3 (GL3) or ENHANCER OF GL3 (EGL3). The conserved [D/E]L×2 [R/K]×3L×6L×3R amino acid signature in the R3 domain of MYB proteins has been shown to be required for the interaction of MYBs with R/B‐like bHLH transcription factors. By using genetic and molecular analyses, we show that the glabrous phenotype in the nph4‐1 mutant is caused by a single nucleotide mutation in the GL1 gene, generating a Ser to Phe substitution (S92F) in the conserved [D/E]L×2[R/K]×3L×6L×3R amino acid signature of GL1. Activation of the integrated GL2p:GUS reporter gene in protoplasts by cotransfection of GL1 and GL3 or EGL3 was abolished by this GL1‐S92F substitution. However, GL1‐S92F interacted successfully with GL3 or EGL3 in protoplast transfection assays. Unlike VPGL1GL3, the fusion protein VPGL1‐S92FGL3 failed to activate the integrated GL2p:GUS reporter gene in transfected protoplasts. These results suggested that the S92 in the conserved [D/E]L×2 [R/K]×3L×6L×3R amino acid signature of GL1 is not essential for the interaction of GL1 and GL3, but may play a role in the binding of GL1 to the promoters of its target genes.The R2R3 MYB transcription factor GL1 is a key regulator of trichome formation in Arabidopsis. The conserved [D/E]L×2[R/K]×3L×6L×3R amino acid signature in the R3 domain is required for the interaction of MYBs with R/B‐like bHLH transcription factors. S92F amino acid substantiation in the conserved [D/E]L×2[R/K]×3L×6L×3R signature in GL1 lead to loss‐of‐function mutation of GL1. However, our results indicate that Ser92 residue is not required for the interaction of GL1 with bHLH transcription factor GL3 or EGL3, but may required for binding of GL1 to its target genes.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherprotein‐protein interaction
dc.subject.otherR2R3 MYB
dc.subject.otherbHLH protein
dc.subject.otheractivator complex
dc.subject.othertranscription factor
dc.titleA single amino acid substitution in the R3 domain of GLABRA1 leads to inhibition of trichome formation in Arabidopsis without affecting its interaction with GLABRA3
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145310/1/pce12695_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145310/2/pce12695.pdf
dc.identifier.doi10.1111/pce.12695
dc.identifier.sourcePlant, Cell & Environment
dc.identifier.citedreferenceTiwari S.B., Hagen G. & Guilfoyle T. ( 2003 ) The roles of auxin response factor domains in auxin‐responsive transcription. Plant Cell 15, 533 – 543.
dc.identifier.citedreferenceSun L., Zhang A., Zhou Z., Zhao Y., Yan A., Bao S. & Gan Y. ( 2015 ) GLABROUS INFLORESCENCE STEMS3 (GIS3) regulates trichome initiation and development in Arabidopsis. New Phytologist 206, 220 – 230.
dc.identifier.citedreferenceSzymanski D.B., Jilk R.A., Pollock S.M. & Marks M.D. ( 1998 ) Control of GL2 expression in Arabidopsis leaves and trichomes. Development 125, 1161 – 1171.
dc.identifier.citedreferenceTominaga R., Iwata M., Sano R., Inoue K., Okada K. & Wada T. ( 2008 ) Arabidopsis CAPRICE‐LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation. Development 135, 1335 – 1345.
dc.identifier.citedreferenceWada T., Tachibana T., Shimura Y. & Okada K. ( 1997 ) Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science 277, 1113 – 1116.
dc.identifier.citedreferenceWada T., Kurata T., Tominaga R., Koshino‐Kimura Y., Tachibana T., Goto K. & Okada K. ( 2002 ) Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129, 5409 – 5419.
dc.identifier.citedreferenceWalker A.R., Davison P.A., Bolognesi‐Winfield A.C., James C.M., Srinivasan N., Blundell T.L. & Gray J.C. ( 1999 ) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11, 1337 – 1350.
dc.identifier.citedreferenceWang S., Wang J.W., Yu N., Li C.H., Luo B., Gou J.Y. & Chen X.Y. ( 2004 ) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16, 2323 – 2334.
dc.identifier.citedreferenceWang S. & Chen J.G. ( 2014 ) Regulation of cell fate determination by single‐repeat R3 MYB transcription factors in Arabidopsis. Frontiers in Plant Science 5, 133.
dc.identifier.citedreferenceWang S. & Chen J.G. ( 2008 ) Arabidopsis transient expression analysis reveals that activation of GLABRA2 may require concurrent binding of GLABRA1 and GLABRA3 to the promoter of GLABRA2. Plant & Cell Physiology 49, 1792 – 1804.
dc.identifier.citedreferenceWang S., Kwak S.H., Zeng Q., Ellis B.E., Chen X.Y., Schiefelbein J. & Chen J.G. ( 2007 ) TRICHOMELESS1 regulates trichome patterning by suppressing GLABRA1 in Arabidopsis. Development 134, 3873 – 3882.
dc.identifier.citedreferenceWang S., Hubbard L., Chang Y., Guo J., Schiefelbein J. & Chen J.G. ( 2008 ) Comprehensive analysis of single‐repeat R3 MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis. BMC Plant Biolology 8, 81.
dc.identifier.citedreferenceWang S., Tiwari S.B., Hagen G. & Guilfoyle T.J. ( 2005 ) AUXIN RESPONSE FACTOR7 restores the expression of auxin‐responsive genes in mutant Arabidopsis leaf mesophyll protoplasts. Plant Cell 17, 1979 – 1993.
dc.identifier.citedreferenceWang S., Barron C., Schiefelbein J. & Chen J.G. ( 2010 ) Distinct relationships between GLABRA2 and single‐repeat R3 MYB transcription factors in the regulation of trichome and root hair patterning in Arabidopsis. New Phytologist 185, 387 – 400.
dc.identifier.citedreferenceWang X., Wang X., Hu Q., Dai X., Tian H., Zheng K. & Wang S. ( 2015 ) Characterization of an activation‐tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis. Plant Journal 83, 300 – 311.
dc.identifier.citedreferenceWerker E. ( 2000 ) Trichome diversity and development. Advances in Botanical Research 31, 1 – 35.
dc.identifier.citedreferenceWester K., Digiuni S., Geier F., Timmer J., Fleck C. & Hülskamp M. ( 2009 ) Functional diversity of R3 single‐repeat genes in trichome development. Development 136, 1487 – 1496.
dc.identifier.citedreferenceYoshida Y., Sano R., Wada T., Takabayashi J. & Okada K. ( 2009 ) Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development 136, 1039 – 1048.
dc.identifier.citedreferenceYu N., Cai W.J., Wang S., Shan C.M., Wang L.J. & Chen X.Y. ( 2010 ) Temporal control of trichome distribution by MicroRNA156‐targeted SPL genes in Arabidopsis thaliana. Plant Cell 22, 2322 – 2335.
dc.identifier.citedreferenceZhao M., Morohashi K., Hatlestad G., Grotewold E. & Lloyd A. ( 2008 ) The TTG1‐bHLH‐MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135, 1991 – 1999.
dc.identifier.citedreferenceZhao H., Wang X., Zhu D., Cui S., Li X., Cao Y. & Ma L. ( 2012 ) A single amino acid substitution in IIIf subfamily of basic helix‐loop‐helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis. Journal Biological Chemistry 287, 14109 – 14121.
dc.identifier.citedreferenceZhang F., Gonzalez A., Zhao M., Payne C.T. & Lloyd A. ( 2003 ) A network of redundant bHLH proteins functions in all TTG1‐dependent pathways of Arabidopsis. Development 130, 4859 – 4869.
dc.identifier.citedreferenceZhou Z., An L., Sun L., Zhu S., Xi W., Broun P. & Gan Y. ( 2011 ) Zinc finger protein5 is required for the control of trichome initiation by acting upstream of zinc finger protein8 in Arabidopsis. Plant Physiology 157, 673 – 682.
dc.identifier.citedreferenceZimmermann I.M., Heim M.A., Weisshaar B. & Uhrig J.F. ( 2004 ) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B‐like BHLH proteins. Plant Journal 40, 22 – 34.
dc.identifier.citedreferenceClough S.J. & Bent A.F. ( 1998 ) Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. Plant Journal 16, 736 – 743.
dc.identifier.citedreferenceDubos C., Stracke R., Grotewold E., Weisshaar B., Martin C. & Lepiniec L. ( 2010 ) MYB transcription factors in Arabidopsis. Trends in Plant Science 15, 573 – 581.
dc.identifier.citedreferenceEisner T., Eisner M. & Hoebeke E.R. ( 1998 ) When defence backfires: detrimental effect of a plant’s protective trichomes on an insect beneficial to the plant. Proceedings of the National Academy of Sciences of the United States of America 95, 4410 – 4414.
dc.identifier.citedreferenceEsch J.J., Chen M., Sanders M., Hillestad M., Ndkium S., Idelkope B. & Marks M.D. ( 2003 ) A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis. Development 130, 5885 – 5894.
dc.identifier.citedreferenceEsch J.J., Chen M.A., Hillestad M. & Marks M.D. ( 2004 ) Comparison of TRY and the closely related At1g01380 gene in controlling Arabidopsis trichome patterning. Plant Journal 40, 860 – 869.
dc.identifier.citedreferenceGan L., Xia K., Chen J.G. & Wang S. ( 2011 ) Functional characterization of TRICHOMELESS2, a new single‐repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis. BMC Plant Biology 11, 176.
dc.identifier.citedreferenceGan Y., Kumimoto R., Liu C., Ratcliffe O., Yu H. & Broun P. ( 2006 ) GLABROUS INFLORESCENCE STEMS modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in Arabidopsis. Plant Cell 18, 1383 – 1395.
dc.identifier.citedreferenceGan Y., Liu C., Yu H. & Broun P. ( 2007 ) Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development 134, 2073 – 2081.
dc.identifier.citedreferenceGalway M.E., Masucci J.D., Lloyd A.M., Walbot V., Davis R.W. & Schiefelbein J.W. ( 1994 ) The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Developmental Biology 166, 740 – 754.
dc.identifier.citedreferenceHajdukiewicz P., Svab Z. & Maliga P. ( 1994 ) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Molecular Biology 25, 989 – 994.
dc.identifier.citedreferenceHarper R.M., Stowe‐Evans E.L., Luesse D.R., Muto H., Tatematsu K., Watahiki M.K. & Liscum E. ( 2000 ) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12, 757 – 770.
dc.identifier.citedreferenceHülskamp M., Misra S. & Jürgens G. ( 1994 ) Genetic dissection of trichome cell development in Arabidopsis. Cell 76, 555 – 566.
dc.identifier.citedreferenceIshida T., Kurata T., Okada K. & Wada T. ( 2008 ) A genetic regulatory network in the development of trichomes and root hairs. Annual Review of Plant Biology 59, 364 – 386.
dc.identifier.citedreferenceKatiyar A., Smita S., Lenka S.K., Rajwanshi R., Chinnusamy V. & Bansal K.C. ( 2012 ) Genome‐wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics 13, 544.
dc.identifier.citedreferenceKhosla A., Paper J.M., Boehler A.P., Bradley A.M., Neumann T.R. & Schrick K. ( 2014 ) HD‐zip proteins GL2 and HDG11 have redundant functions in Arabidopsis trichomes, and GL2 activates a positive feedback loop via MYB23. Plant Cell 26, 2184 – 2200.
dc.identifier.citedreferenceKirik V., Lee M.M., Wester K., Hermann U., Zheng Z., Oppenheimer D. & Hülskamp M. ( 2005 ) Functional diversificatin of MYB23 and GL1 genes in trichome morphogenesis and initiation. Development 132, 1477 – 1485.
dc.identifier.citedreferenceKirik V., Simon M., Hülskamp M. & Schiefelbein J. ( 2004a ) The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Developmental Biology 268, 506 – 513.
dc.identifier.citedreferenceKirik V., Simon M., Wester K., Schiefelbein J. & Hülskamp M. ( 2004b ) ENHANCER of TRY and CPC 2(ETC2) reveals redundancy in the region‐specific control of trichome development of Arabidopsis. Plant Molecular Biology 55, 389 – 398.
dc.identifier.citedreferenceKoornneef M., Dellaert L.W.M. & van der Veen J.H. ( 1982 ) EMS‐ and radiation‐induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutation Research 93, 109 – 123.
dc.identifier.citedreferenceLarkin J.C., Oppenheimer D.G., Lloyd A.M., Paparozzi E.T. & Marks M.D. ( 1994 ) Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development. Plant Cell 6, 1065 – 1076.
dc.identifier.citedreferenceLee M.M & Schiefelbein J. ( 2001 ) Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis. Development 128, 1539 – 1546.
dc.identifier.citedreferenceLisum E. & Briggs W.R. ( 1995 ) Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7, 473 – 485.
dc.identifier.citedreferenceMasucci J.D., Rerie W.G., Foreman D.R., Zhang M., Galway M.E., Marks M.D. & Schiefelbein J.W. ( 1996 ) The homeobox gene GLABRA2 is required for position‐dependent cell differentiation in the root epidermis of Arabidopsis thaliana. Development 122, 1253 – 1260.
dc.identifier.citedreferenceMauricio R. & Rausher M.D. ( 1997 ) Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51, 1435 – 1444.
dc.identifier.citedreferenceOgata K., Morikawa S., Nakamura H., Sekikawa A., Inoue T., Kanai H. & Nishimura Y. ( 1994 ) Solution structure of a specific DNA complex of the Myb DNA‐binding domain with cooperative recognition helices. Cell 79, 639 – 648.
dc.identifier.citedreferenceOppenheimer D.G., Herman P.L., Sivakumaran S., Esch J. & Marks M.D. ( 1991 ) A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67, 483 – 493.
dc.identifier.citedreferencePayne C.T., Zhang F. & Lloyd A.M. ( 2000 ) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156, 1349 – 1362.
dc.identifier.citedreferencePesch M. & Hülskamp M. ( 2004 ) Creating a two‐dimensional pattern de novo during Arabidopsis trichome and root hair initiation. Current Opinion in Genetics & Development 14, 422 – 427.
dc.identifier.citedreferencePesch M. & Hülskamp M. ( 2009 ) One, two, three…models for trichome patterning in Arabidopsis? Current Opinion in Plant Biology 12, 587 – 592.
dc.identifier.citedreferencePesch M., Schultheiß I., Klopffleisch K., Uhrig J.F., Koegl M., Clemen C.S. & Hülskamp M. ( 2015 ) TRANSPARENT TESTA GLABRA1 and GLABRA1 compete for binding to GLABRA3 in Arabidopsis. Plant Physiology 168, 584 ‐ 597.
dc.identifier.citedreferenceRerie W.G., Feldmann K.A. & Marks M.D. ( 1994 ) The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes & Development 8, 1388 – 1399.
dc.identifier.citedreferenceSchellmann S., Schnittger A., Kirik V., Wada T., Okada K., Beermann A. & Hülskamp M. ( 2002 ) TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO Journal 21, 5036 – 5046.
dc.identifier.citedreferenceSchiefelbein J. ( 2003 ) Cell‐fate specification in the epidermis: a common patterning mechanism in the root and shoot. Current Opinion in Plant Biology 6, 74 – 78.
dc.identifier.citedreferenceSchnittger A., Folkers U., Schwab B., Jürgens G. & Hülskamp M. ( 1999 ) Generation of a spacing pattern: the role of TRIPTYCHON in trichome patterning in Arabidopsis. Plant Cell 11, 1105 – 1116.
dc.identifier.citedreferenceSerna L. & Martin C. ( 2006 ) Trichomes: different regulatory networks lead to convergent structures. Trends in Plant Science 11, 274 – 280.
dc.identifier.citedreferenceShen B., Sinkevicius K.W. & Selinger D.A. ( 2006 ) Tarczynski MC The homeobox gene GLABRA2 affects seed oil content in Arabidopsis. Plant Molecular Biology 60, 377 – 87.
dc.identifier.citedreferenceShi L., Katavic V., Yu Y., Kunst L. & Haughn G. ( 2012 ) Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil. Plant Journal 69, 37 – 46.
dc.identifier.citedreferenceSolano R., Fuertes A., Sanchez‐Pulido L., Valencia A. & Paz‐Ares J. ( 1997 ) A single residue substitution causes a switch from the dual DNA binding specificity of plant transcription factor MYB.Ph3 to the animal c‐MYB specificity. Journal of Biological Chemistry 272, 2889 – 2895.
dc.identifier.citedreferenceStracke R., Werber M. & Weisshaar B. ( 2001 ) The R2R3‐MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology 4, 447 – 456.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.