Show simple item record

MMR Deficiency Does Not Sensitize or Compromise the Function of Hematopoietic Stem Cells to Low and High LET Radiation

dc.contributor.authorPatel, Rutulkumar
dc.contributor.authorQing, Yulan
dc.contributor.authorKennedy, Lucy
dc.contributor.authorYan, Yan
dc.contributor.authorPink, John
dc.contributor.authorAguila, Brittany
dc.contributor.authorDesai, Amar
dc.contributor.authorGerson, Stanton L.
dc.contributor.authorWelford, Scott M.
dc.date.accessioned2018-08-13T18:51:37Z
dc.date.available2019-09-04T20:15:38Zen
dc.date.issued2018-07
dc.identifier.citationPatel, Rutulkumar; Qing, Yulan; Kennedy, Lucy; Yan, Yan; Pink, John; Aguila, Brittany; Desai, Amar; Gerson, Stanton L.; Welford, Scott M. (2018). "MMR Deficiency Does Not Sensitize or Compromise the Function of Hematopoietic Stem Cells to Low and High LET Radiation." STEM CELLS Translational Medicine 7(7): 513-520.
dc.identifier.issn2157-6564
dc.identifier.issn2157-6580
dc.identifier.urihttps://hdl.handle.net/2027.42/145333
dc.description.abstractOne of the major health concerns on long‐duration space missions will be radiation exposure to the astronauts. Outside the earth’s magnetosphere, astronauts will be exposed to galactic cosmic rays (GCR) and solar particle events that are principally composed of protons and He, Ca, O, Ne, Si, Ca, and Fe nuclei. Protons are by far the most common species, but the higher atomic number particles are thought to be more damaging to biological systems. Evaluation and amelioration of risks from GCR exposure will be important for deep space travel. The hematopoietic system is one of the most radiation‐sensitive organ systems, and is highly dependent on functional DNA repair pathways for survival. Recent results from our group have demonstrated an acquired deficiency in mismatch repair (MMR) in human hematopoietic stem cells (HSCs) with age due to functional loss of the MLH1 protein, suggesting an additional risk to astronauts who may have significant numbers of MMR deficient HSCs at the time of space travel. In the present study, we investigated the effects gamma radiation, proton radiation, and 56Fe radiation on HSC function in Mlh1+/+ and Mlh1‐/‐ marrow from mice in a variety of assays and have determined that while cosmic radiation is a major risk to the hematopoietic system, there is no dependence on MMR capacity. Stem Cells Translational Medicine 2018;7:513–520The hematopoietic system is essential for life, and normally has the capacity to sustain function for the duration of our lifetimes in spite of natural declination, which is associated with loss of DNA repair (including as DNA mismatch repair). Astronauts are exposed to ionizing radiation sources that are not commonly found on earth (such as HZE ions) and thus may display unforseen risks that need accounting in NASA risk models.
dc.publisherWiley Periodicals, Inc.
dc.publisherWolters Kluwer Health/Lippincott Williams & Wilkins
dc.subject.otherMlh1
dc.subject.otherHematopoiesis
dc.subject.otherStem cells
dc.subject.otherIonizing radiation
dc.subject.otherDNA mismatch repair
dc.subject.otherHematopoietic stem cell
dc.titleMMR Deficiency Does Not Sensitize or Compromise the Function of Hematopoietic Stem Cells to Low and High LET Radiation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145333/1/sct312310.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145333/2/sct312310_am.pdf
dc.identifier.doi10.1002/sctm.17-0295
dc.identifier.sourceSTEM CELLS Translational Medicine
dc.identifier.citedreferenceXu XS, Narayanan L, Dunklee B et al. Hypermutability to ionizing radiation in mismatch repair‐deficient, Pms2 knockout mice. Cancer Res 2001; 61: 3775 – 3780.
dc.identifier.citedreferenceRithidech KN, Honikel L, Whorton EB. mFISH analysis of chromosomal damage in bone marrow cells collected from CBA/CaJ mice following whole body exposure to heavy ions (56Fe ions). Radiat Environ Biophys 2007; 46: 137 – 145.
dc.identifier.citedreferenceMiousse IR, Shao L, Chang J et al. Exposure to low‐dose (56)Fe‐ion radiation induces long‐term epigenetic alterations in mouse bone marrow hematopoietic progenitor and stem cells. Radiat Res 2014; 182: 92 – 101.
dc.identifier.citedreferenceGrosovsky AJ, de Boer JG, de Jong PJ et al. Base substitutions, frameshifts, and small deletions constitute ionizing radiation‐induced point mutations in mammalian cells. Proc Natl Acad Sci USA 1988; 85: 185 – 188.
dc.identifier.citedreferenceSteffen LS, Bacher JW, Peng Y et al. Molecular characterisation of murine acute myeloid leukaemia induced by 56Fe ion and 137Cs gamma ray irradiation. Mutagenesis 2013; 28: 71 – 79.
dc.identifier.citedreferenceJiricny J. The multifaceted mismatch‐repair system. Nat Rev Mol Cell Biol 2006; 7: 335 – 346.
dc.identifier.citedreferenceFishel R, Lescoe MK, Rao MR et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993; 75: 1027 – 1038.
dc.identifier.citedreferenceBronner CE, Baker SM, Morrison PT et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non‐polyposis colon cancer. Nature 1994; 368: 258 – 261.
dc.identifier.citedreferenceLiu B, Parsons R, Papadopoulos N et al. Analysis of mismatch repair genes in hereditary non‐polyposis colorectal cancer patients. Nat Med 1996; 2: 169 – 174.
dc.identifier.citedreferenceHause RJ, Pritchard CC, Shendure J et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 2016; 22: 1342 – 1350.
dc.identifier.citedreferenceWada C, Shionoya S, Fujino Y et al. Genomic instability of microsatellite repeats and its association with the evolution of chronic myelogenous leukemia. Blood 1994; 83: 3449 – 3456.
dc.identifier.citedreferenceZhu YM, Das‐Gupta EP, Russell NH. Microsatellite instability and p53 mutations are associated with abnormal expression of the MSH2 gene in adult acute leukemia. Blood 1999; 94: 733 – 740.
dc.identifier.citedreferenceRobledo M, Martinez B, Arranz E et al. Genetic instability of microsatellites in hematological neoplasms. Leukemia 1995; 9: 960 – 964.
dc.identifier.citedreferenceKenyon J, Fu P, Lingas K et al. Humans accumulate microsatellite instability with acquired loss of MLH1 protein in hematopoietic stem and progenitor cells as a function of age. Blood 2012; 120: 3229 – 3236.
dc.identifier.citedreferenceKenyon J, Nickel‐Meester G, Qing Y et al. Epigenetic loss of MLH1 expression in normal human hematopoietic stem cell clones is defined by the promoter CpG methylation pattern observed by high‐throughput methylation specific sequencing. Int J Stem Cell Res Ther 2016; 3: 031.
dc.identifier.citedreferenceGridley DS, Pecaut MJ, Nelson GA. Total‐body irradiation with high‐LET particles: Acute and chronic effects on the immune system. Am J Physiol Regul Integr Comp Physiol 2002; 282: R677 – R688.
dc.identifier.citedreferenceAinsworth EJ. Early and late mammalian responses to heavy charged particles. Adv Space Res 1986; 6: 153 – 165.
dc.identifier.citedreferenceEdelmann W, Yang K, Kuraguchi M et al. Tumorigenesis in Mlh1 and Mlh1/Apc1638N mutant mice. Cancer Res 1999; 59: 1301 – 1307.
dc.identifier.citedreferenceTokairin Y, Kakinuma S, Arai M et al. Accelerated growth of intestinal tumours after radiation exposure in Mlh1‐knockout mice: Evaluation of the late effect of radiation on a mouse model of HNPCC. Int J Exp Pathol 2006; 87: 89 – 99.
dc.identifier.citedreferenceSzilvassy SJ, Humphries RK, Lansdorp PM et al. Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci USA 1990; 87: 8736 – 8740.
dc.identifier.citedreferenceSzilvassy SJ, Nicolini FE, Eaves CJ et al. Quantitation of murine and human hematopoietic stem cells by limiting‐dilution analysis in competitively repopulated hosts. Methods Mol Med 2002; 63: 167 – 187.
dc.identifier.citedreferenceRossi DJ, Bryder D, Seita J et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007; 447: 725 – 729.
dc.identifier.citedreferenceNijnik A, Woodbine L, Marchetti C et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature 2007; 447: 686 – 690.
dc.identifier.citedreferenceLynch HT, Lynch PM. Colorectal cancer: Update on the clinical management of Lynch syndrome. Nat Rev Gastroenterol Hepatol 2013; 10: 323 – 324.
dc.identifier.citedreferenceNaka K, Hirao A. Maintenance of genomic integrity in hematopoietic stem cells. Int J Hematol 2011; 93: 434 – 439.
dc.identifier.citedreferenceHall EJ, Giaccia AJ. Radiobiology for the Radiologist. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2012: 546.
dc.identifier.citedreferenceWang GJ, Cai L. Induction of cell‐proliferation hormesis and cell‐survival adaptive response in mouse hematopoietic cells by whole‐body low‐dose radiation. Toxicol Sci 2000; 53: 369 – 376.
dc.identifier.citedreferenceChang J, Feng W, Wang Y et al. Whole‐body proton irradiation causes long‐term damage to hematopoietic stem cells in mice. Radiat Res 2015; 183: 240 – 248.
dc.identifier.citedreferenceDavies H, Morganella S, Purdie CA et al. Whole‐genome sequencing reveals breast cancers with mismatch repair deficiency. Cancer Res 2017; 77: 4755 – 4762.
dc.identifier.citedreferenceMuralidharan S, Sasi SP, Zuriaga MA et al. Ionizing particle radiation as a modulator of endogenous bone marrow cell reprogramming: Implications for hematological cancers. Front Oncol 2015; 5: 231.
dc.identifier.citedreferenceWeil MM, Bedford JS, Bielefeldt‐Ohmann H et al. Incidence of acute myeloid leukemia and hepatocellular carcinoma in mice irradiated with 1 GeV/nucleon (56)Fe ions. Radiat Res 2009; 172: 213 – 219.
dc.identifier.citedreferenceWeil MM, Ray FA, Genik PC et al. Effects of 28Si ions, 56Fe ions, and protons on the induction of murine acute myeloid leukemia and hepatocellular carcinoma. PLoS One 2014; 9: e104819.
dc.identifier.citedreferenceKerr RA. Planetary exploration. Radiation will make astronauts’ trip to Mars even riskier. Science 2013; 340: 1031.
dc.identifier.citedreferenceDurante M, Cucinotta FA. Heavy ion carcinogenesis and human space exploration. Nat Rev Cancer 2008; 8: 465 – 472.
dc.identifier.citedreferenceCucinotta FA. Space radiation risks for astronauts on multiple International Space Station missions. PLoS One 2014; 9: e96099.
dc.identifier.citedreferenceZeitlin C, Hassler DM, Cucinotta FA et al. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 2013; 340: 1080 – 1084.
dc.identifier.citedreferenceBenton ER, Benton EV. Space radiation dosimetry in low‐Earth orbit and beyond. Nucl Instrum Methods Phys Res B 2001; 184: 255 – 294.
dc.identifier.citedreferenceCucinotta FA, Wu H, Shavers MR et al. Radiation dosimetry and biophysical models of space radiation effects. Gravit Space Biol Bull 2003; 16: 11 – 18.
dc.identifier.citedreferenceSutherland BM, Bennett PV, Schenk H et al. Clustered DNA damages induced by high and low LET radiation, including heavy ions. Phys Med 2001; 17 ( suppl 1 ): 202 – 204.
dc.identifier.citedreferenceHada M, Sutherland BM. Spectrum of complex DNA damages depends on the incident radiation. Radiat Res 2006; 165: 223 – 230.
dc.identifier.citedreferenceBlakely EA, Kronenberg A. Heavy‐ion radiobiology: New approaches to delineate mechanisms underlying enhanced biological effectiveness. Radiat Res 1998; 150: S126 – S145.
dc.identifier.citedreferenceDatta K, Neumann RD, Winters TA. Characterization of complex apurinic/apyrimidinic‐site clustering associated with an authentic site‐specific radiation‐induced DNA double‐strand break. Proc Natl Acad Sci USA 2005; 102: 10569 – 10574.
dc.identifier.citedreferenceBrooks AL, Bao S, Rithidech K et al. Induction and repair of HZE induced cytogenetic damage. Phys Med 2001; 17 ( suppl 1 ): 183 – 184.
dc.identifier.citedreferenceBrooks A, Bao S, Rithidech K et al. Relative effectiveness of HZE iron‐56 particles for the induction of cytogenetic damage in vivo. Radiat Res 2001; 155: 353 – 359.
dc.identifier.citedreferenceWaselenko JK, MacVittie TJ, Blakely WF et al. Medical management of the acute radiation syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med 2004; 140: 1037 – 1051.
dc.identifier.citedreferenceKondo M, Wagers AJ, Manz MG et al. Biology of hematopoietic stem cells and progenitors: Implications for clinical application. Annu Rev Immunol 2003; 21: 759 – 806.
dc.identifier.citedreferenceShao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid Redox Signal 2014; 20: 1447 – 1462.
dc.identifier.citedreferenceMauch P, Constine L, Greenberger J et al. Hematopoietic stem cell compartment: Acute and late effects of radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys 1995; 31: 1319 – 1339.
dc.identifier.citedreferenceDatta K, Suman S, Trani D et al. Accelerated hematopoietic toxicity by high energy (56)Fe radiation. Int J Radiat Biol 2012; 88: 213 – 222.
dc.identifier.citedreferenceTucker JD, Marples B, Ramsey MJ et al. Persistence of chromosome aberrations in mice acutely exposed to 56Fe+26 ions. Radiat Res 2004; 161: 648 – 655.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.