Show simple item record

Statistical Study of the Energetic Proton Environment at Titan’s Orbit From the Cassini Spacecraft

dc.contributor.authorRegoli, L. H.
dc.contributor.authorRoussos, E.
dc.contributor.authorDialynas, K.
dc.contributor.authorLuhmann, J. G.
dc.contributor.authorSergis, N.
dc.contributor.authorJia, X.
dc.contributor.authorRomán, D.
dc.contributor.authorAzari, A.
dc.contributor.authorKrupp, N.
dc.contributor.authorJones, G. H.
dc.contributor.authorCoates, A. J.
dc.contributor.authorRae, I. J.
dc.date.accessioned2018-08-13T18:51:54Z
dc.date.available2019-08-01T19:53:23Zen
dc.date.issued2018-06
dc.identifier.citationRegoli, L. H.; Roussos, E.; Dialynas, K.; Luhmann, J. G.; Sergis, N.; Jia, X.; Román, D. ; Azari, A.; Krupp, N.; Jones, G. H.; Coates, A. J.; Rae, I. J. (2018). "Statistical Study of the Energetic Proton Environment at Titan’s Orbit From the Cassini Spacecraft." Journal of Geophysical Research: Space Physics 123(6): 4820-4834.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/145346
dc.description.abstractA statistical study of the energetic proton environment at Titan’s orbit as captured by the MIMI/LEMMS and MIMI/CHEMS instruments is performed. The data analyzed cover all the dedicated flybys of Titan by Cassini as well as the orbit crossings that happen far from the moon. The energetic environment is found to be highly variable on timescales comparable to that of the duration of a flyby. Analysis of H+ ion fluxes reveals a weak asymmetry in Saturn local time with the highest fluxes occurring in the premidnight sector of the magnetosphere. A correlation between the energetic ion fluxes and the location of Cassini in the magnetosphere with respect to the center of the current sheet can be observed. Finally, an empirical model of proton spectra for energies above 20 keV is derived based on fits to Kappa distribution functions. This model can be used to better understand the interaction of Titan with the magnetosphere and the energy deposition by energetic particles below the main ionospheric peak.Key PointsEnergetic particle environment at Titan’s orbit is highly variableIon data present SLT asymmetry with higher fluxes in the premidnight sectorDerivation of empirical model of ion spectra based on Kappa distribution function is presented
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMIMI
dc.subject.otherTitan
dc.subject.otherenergetic ions
dc.subject.otherempirical model
dc.subject.otherKappa distributions
dc.subject.otherCassini
dc.titleStatistical Study of the Energetic Proton Environment at Titan’s Orbit From the Cassini Spacecraft
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145346/1/jgra54321_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145346/2/jgra54321.pdf
dc.identifier.doi10.1029/2018JA025442
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRegoli, L. H., Roussos, E., Feyerabend, M., Jones, G. H., Krupp, N., Coates, A. J., et al. ( 2016 ). Access of energetic particles to Titan’s exobase: A study of Cassini’s T9 flyby. Planetary and Space Science, 130, 40 – 53. https://doi.org/10.1016/j.pss.2015.11.013
dc.identifier.citedreferenceDialynas, K., Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Krupp, N., & Brandt, P. C. ( 2009 ). Energetic ion spectral characteristics in the Saturnian magnetosphere using Cassini/MIMI measurements. Journal of Geophysical Research, 114, A01212. https://doi.org/10.1029/2008JA013761
dc.identifier.citedreferenceDialynas, K., Paranicas, C. P., Carbary, J. F., Kane, M., Krimigis, S. M., & Mauk, B. H. ( 2017 ). The Kappa‐shaped particle spectra in planetary magnetospheres. In Kappa Distributions (pp. 481 – 522 ). Elsevier.
dc.identifier.citedreferenceGronoff, G., Lilensten, J., & Modolo, R. ( 2009 ). Ionization processes in the atmosphere of Titan II. Electron precipitation along magnetic field lines. Astronomy & Astrophysics, 506, 965 – 970. https://doi.org/10.1051/0004-6361-200912125
dc.identifier.citedreferenceHartle, R. E., Sittler, E. C., Neubauer, F. M., Johnson, R. E., Smith, H. T., Crary, F., et al. ( 2006 ). Preliminary interpretation of Titan plasma interaction as observed by the Cassini plasma spectrometer: Comparisons with Voyager 1. Geophysical Research Letters, 33, L08201. https://doi.org/10.1029/2005GL024817
dc.identifier.citedreferenceKabanovic, S., Simon, S., Neubauer, F. M., & Meeks, Z. ( 2017 ). An empirical model of Titan’s magnetic environment during the Cassini era: Evidence for seasonal variability. Journal of Geophysical Research: Space Physics, 122, 11,076 – 11,085. https://doi.org/10.1002/2017JA024402
dc.identifier.citedreferenceKrimigis, S. M., Mitchell, D. G., Hamilton, D. C., Livi, S., Dandouras, J., Jaskulek, S., et al. ( 2004 ). Magnetosphere imaging instrument (MIMI) on the Cassini mission to Saturn/Titan. Space Science Reviews, 114, 233 – 329. https://doi.org/10.1007/s11214-004-1410-8
dc.identifier.citedreferenceKrimigis, S. M., Sergis, N., Mitchell, D. G., Hamilton, D. C., & Krupp, N. ( 2007 ). A dynamic, rotating ring current around Saturn. Nature, 450, 1050 – 1053. https://doi.org/10.1038/nature06425
dc.identifier.citedreferenceKrupp, N., Roussos, E., Kollmann, P., Paranicas, C., Mitchell, D. G., Krimigis, S. M., et al. ( 2012 ). The Cassini Enceladus encounters 2005–2010 in the view of energetic electron measurements. Icarus, 218 ( 1 ), 433 – 447. https://doi.org/10.1016/j.icarus.2011.12.018
dc.identifier.citedreferenceKrupp, N., Roussos, E., Lagg, A., Woch, J., Müller, A. L., Krimigis, S. M., et al. ( 2009 ). Energetic particles in Saturn’s magnetosphere during the Cassini nominal mission (July 2004–July 2008). Planetary and Space Science, 57 ( 14–15 ), 1754 – 1768. https://doi.org/10.1016/j.pss.2009.06.010
dc.identifier.citedreferenceLivadiotis, G. ( 2015 ). Introduction to special section on Origins and Properties of Kappa Distributions: Statistical background and properties of kappa distributions in space plasmas. Journal of Geophysical Research: Space Physics, 120, 1607 – 1619. https://doi.org/10.1002/2014JA020825
dc.identifier.citedreferenceLivadiotis, G. ( 2017 ). Chapter 1—Statistical background of kappa distributions: Connection with nonextensive statistical mechanics. In G.   Livadiotis (Ed.), Kappa Distributions (pp. 3 – 63 ). Elsevier. https://doi.org/10.1016/B978-0-12-804638-8.00001-2
dc.identifier.citedreferenceLivadiotis, G., & McComas, D. J. ( 2013 ). Understanding kappa distributions: A toolbox for space science and astrophysics. Space Science Reviews, 175 ( 1 ), 183 – 214.
dc.identifier.citedreferenceMauk, B. H., Mitchell, D. G., McEntire, R. W., Paranicas, C. P., Roelof, E. C., Williams, D. J., et al. ( 2004 ). Energetic ion characteristics and neutral gas interactions in Jupiter’s magnetosphere. Journal of Geophysical Research, 109, A09S12. https://doi.org/10.1029/2003JA010270
dc.identifier.citedreferenceNémeth, Z., Szego, K., Bebesi, Z., Erdős, G., Foldy, L., Rymer, A., et al. ( 2011 ). Ion distributions of different Kronian plasma regions. Journal of Geophysical Research, 116, A09212. https://doi.org/10.1029/2011JA016585
dc.identifier.citedreferenceNeubauer, F. M., Gurnett, D. A., Scudder, J. D., & Hartle, R. E. ( 1984 ). Titan’s magnetospheric interaction. In T.   Gehrels & M. S.   Matthews (Eds.), Saturn. Tucson, AZ: University of Arizona Press.
dc.identifier.citedreferenceRoussos, E., Jackman, C. M., Thomsen, M. F., Kurth, W. S., Badman, S. V., Paranicas, C., et al. ( 2017 ). Solar energetic particles (SEP) and galactic cosmic rays (GCR) as tracers of solar wind conditions near Saturn: Event lists and applications. Icarus, 300, 47 – 71. https://doi.org/10.1016/j.icarus.2017.08.040
dc.identifier.citedreferenceRussell, C. T., Luhmann, J. G., & Strangeway, R. J. ( 2006 ). The solar wind interaction with Venus through the eyes of the Pioneer Venus Orbiter. Planetary and Space Science, 54, 1482 – 1495. https://doi.org/10.1016/j.pss.2006.04.025
dc.identifier.citedreferenceRymer, A. M., Smith, H. T., Wellbrock, A., Coates, A. J., & Young, D. T. ( 2009 ). Discrete classification and electron energy spectra of Titan’s varied magnetospheric environment. Geophysical Research Letters, 36, L15109. https://doi.org/10.1029/2009GL039427
dc.identifier.citedreferenceSergis, N., Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Krupp, N., Mauk, B. M., et al. ( 2007 ). Ring current at Saturn: Energetic particle pressure in Saturn’s equatorial magnetosphere measured with Cassini/MIMI. Geophysical Research Letters, 34, L09102. https://doi.org/10.1029/2006GL029223
dc.identifier.citedreferenceSergis, N., Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Krupp, N., Mauk, B. H., et al. ( 2009 ). Energetic particle pressure in Saturn’s magnetosphere measured with the magnetospheric imaging instrument on Cassini. Journal of Geophysical Research, 114, A02214. https://doi.org/10.1029/2008JA013774
dc.identifier.citedreferenceSimon, S., van Treeck, S. C., Wennmacher, A., Saur, J., Neubauer, F. M., Bertucci, C. L., & Dougherty, M. K. ( 2013 ). Structure of Titan’s induced magnetosphere under varying background magnetic field conditions: Survey of Cassini magnetometer data from flybys TA‐T85. Journal of Geophysical Research: Space Physics, 118, 1679 – 1699. https://doi.org/10.1002/jgra.50096
dc.identifier.citedreferenceSimon, S., Wennmacher, A., Neubauer, F. M., Bertucci, C. L., Kriegel, H., Saur, J., et al. ( 2010 ). Titan’s highly dynamic magnetic environment: A systematic survey of Cassini magnetometer observations from flybys TA–T62. Planetary and Space Science, 58 ( 10 ), 1230 – 1251. https://doi.org/10.1016/j.pss.2010.04.021
dc.identifier.citedreferenceSlavin, J. A., Elphic, R. C., Russell, C. T., Scarf, F. L., Wolfe, J. H., Mihalov, J. D., et al. ( 1980 ). The solar wind interaction with Venus: Pioneer Venus observations of bow shock location and structure. Journal of Geophysical Research, 85, 7625 – 7641. https://doi.org/10.1029/JA085iA13p07625
dc.identifier.citedreferenceSmith, H. T., Mitchell, D. G., Johnson, R. E., & Paranicas, C. P. ( 2009 ). Investigation of energetic proton penetration in Titan’s atmosphere using the Cassini INCA instrument. Planetary and Space Science, 57 ( 13 ), 1538 – 1546. https://doi.org/10.1016/j.pss.2009.03.013
dc.identifier.citedreferenceSmith, H. T., & Rymer, A. M. ( 2014 ). An empirical model for the plasma environment along Titan’s orbit based on Cassini plasma observations. Journal of Geophysical Research: Space Physics, 119, 5674 – 5684. https://doi.org/10.1002/2014JA019872
dc.identifier.citedreferenceThomsen, M. F., Coates, A. J., Jackman, C. M., Sergis, N., Jia, X., & Hansen, K. C. ( 2018 ). Survey of magnetosheath plasma properties at Saturn and inference of upstream flow conditions. Journal of Geophysical Research: Space Physics, 123, 2034 – 2053. https://doi.org/10.1002/2018JA025214
dc.identifier.citedreferenceThomsen, M. F., Reisenfeld, D. B., Delapp, D. M., Tokar, R. L., Young, D. T., Crary, F. J., et al. ( 2010 ). Survey of ion plasma parameters in Saturn’s magnetosphere. Journal of Geophysical Research, 115, A10220. https://doi.org/10.1029/2010JA015267
dc.identifier.citedreferenceVasyliunas, V. M. ( 1968 ). A survey of low‐energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. Journal of Geophysical Research, 73, 2839 – 2884. https://doi.org/10.1029/JA073i009p02839
dc.identifier.citedreferenceWei, H. Y., Russell, C. T., Dougherty, M. K., Neubauer, F. M., & Ma, Y. J. ( 2010 ). Upper limits on Titan’s magnetic moment and implications for its interior. Journal of Geophysical Research, 115, E10007. https://doi.org/10.1029/2009JE003538
dc.identifier.citedreferenceYoung, D. T., Berthelier, J.‐J., Blanc, M., Burch, J. L., Bolton, S., Coates, A. J., et al. ( 2005 ). Composition and dynamics of plasma in Saturn’s magnetosphere. Science, 307, 1262 – 1266. https://doi.org/10.1126/science.1106151
dc.identifier.citedreferenceYoung, D. T., Berthelier, J. J., Blanc, M., Burch, J. L., Coates, A. J., Goldstein, R., et al. ( 2004 ). Cassini plasma spectrometer investigation. Space Science Reviews, 114, 1 – 112.
dc.identifier.citedreferenceEdberg, N. J. T., Andrews, D. J., Bertucci, C., Gurnett, D. A., Holmberg, M. K. G., Jackman, C. M., et al. ( 2015 ). Effects of Saturn’s magnetospheric dynamics on Titan’s ionosphere. Journal of Geophysical Research: Space Physics, 120, 8884 – 8898. https://doi.org/10.1002/2015JA021373
dc.identifier.citedreferenceEdberg, N. J. T., Andrews, D. J., Shebanits, O., Ågren, K., Wahlund, J.‐E., Opgenoorth, H. J., et al. ( 2013 ). Extreme densities in Titan’s ionosphere during the T85 magnetosheath encounter. Geophysical Research Letters, 40, 2879 – 2883. https://doi.org/10.1002/grl.50579
dc.identifier.citedreferenceGarnier, P., Dandouras, I., Toublanc, D., Roelof, E. C., Brandt, P. C., Mitchell, D. G., et al. ( 2010 ). Statistical analysis of the energetic ion and ENA data for the Titan environment. Planetary and Space Science, 58, 1811 – 1822.
dc.identifier.citedreferenceAchilleos, N., Arridge, C. S., Bertucci, C., Jackman, C. M., Dougherty, M. K., Khurana, K. K., & Russell, C. T. ( 2008 ). Large‐scale dynamics of Saturn’s magnetopause: Observations by Cassini. Journal of Geophysical Research, 113, A11209. https://doi.org/10.1029/2008JA013265
dc.identifier.citedreferenceArridge, C. S., André, N., Bertucci, C. L., Garnier, P., Jackman, C. M., Németh, Z., et al. ( 2011 ). Upstream of Saturn and Titan. Space Science Reviews, 162, 25 – 83.
dc.identifier.citedreferenceArridge, C. S., Khurana, K. K., Russell, C. T., Southwood, D. J., Achilleos, N., et al. ( 2008 ). Warping of Saturn’s magnetospheric and magnetotail current sheets. Journal of Geophysical Research, 113, A08217. https://doi.org/10.1029/2007JA012963
dc.identifier.citedreferenceBackes, H., Neubauer, F. M., Dougherty, M. K., Achilleos, N., André, N., Arridge, C. S., et al. ( 2005 ). Titan’s magnetic field signature during the first Cassini encounter. Science, 308 ( 5724 ), 992 – 995.
dc.identifier.citedreferenceBertucci, C., Achilleos, N., Dougherty, M. K., Modolo, R., Coates, A. J., Szego, K., et al. ( 2008 ). The magnetic memory of Titan’s ionized atmosphere. Science, 321 ( 5895 ), 1475 – 1478.
dc.identifier.citedreferenceBertucci, C., Hamilton, D. C., Kurth, W. S., Hospodarsky, G., Mitchell, D., Sergis, N., et al. ( 2015 ). Titan’s interaction with the supersonic solar wind. Geophysical Research Letters, 42, 193 – 200. https://doi.org/10.1002/2014GL062106
dc.identifier.citedreferenceBrain, D. A., Hurley, D., & Combi, M. R. ( 2010 ). The solar wind interaction with Mars: Recent progress and future directions. Icarus, 206 ( 1 ), 1 – 4. https://doi.org/10.1016/j.icarus.2009.10.020
dc.identifier.citedreferenceBrandt, P. C., Dialynas, K., Dandouras, I., Mitchell, D. G., Garnier, P., & Krimigis, S. M. ( 2012 ). The distribution of Titan’s high‐altitude (out to ∼50,000 km) exosphere from energetic neutral atom (ENA) measurements by Cassini/INCA. Planetary and Space Science, 60 ( 1 ), 107 – 114. https://doi.org/10.1016/j.pss.2011.04.014
dc.identifier.citedreferenceBrecht, S. H., & Ledvina, S. A. ( 2006 ). The solar wind interaction with the Martian ionosphere/atmosphere. Space Science Reviews, 126, 15 – 38. https://doi.org/10.1007/s11214-006-9084-z
dc.identifier.citedreferenceCravens, T. E., Robertson, I. P., Clark, J., Wahlund, J.‐E., Waite, J. H. Jr., Ledvina, S. A., et al. ( 2005 ). Titan’s ionosphere: Model comparisons with Cassini Ta data. Geophysical Research Letters, 32, L12108. https://doi.org/10.1029/2005GL023249
dc.identifier.citedreferenceCravens, T. E., Robertson, I. P., Ledvina, S. A., Mitchell, D., Krimigis, S. M., & Waite, J. H. ( 2008 ). Energetic ion precipitation at Titan. Geophysical Research Letters, 35, L03103. https://doi.org/10.1029/2007GL032451
dc.identifier.citedreferenceDialynas, K., Brandt, P. C., Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Krupp, N., & Rymer, A. M. ( 2013 ). The extended Saturnian neutral cloud as revealed by global ENA simulations using Cassini/MIMI measurements. Journal of Geophysical Research: Space Physics, 118, 3027 – 3041. https://doi.org/10.1002/jgra.50295
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.