Show simple item record

Metabolomic serum profiling after ACL injury in rats: A pilot study implicating inflammation and immune dysregulation in post‐traumatic osteoarthritis

dc.contributor.authorMaerz, Tristan
dc.contributor.authorSherman, Eric
dc.contributor.authorNewton, Michael
dc.contributor.authorYilmaz, Ali
dc.contributor.authorKumar, Praveen
dc.contributor.authorGraham, Stewart F.
dc.contributor.authorBaker, Kevin C.
dc.date.accessioned2018-08-13T18:52:00Z
dc.date.available2019-09-04T20:15:38Zen
dc.date.issued2018-07
dc.identifier.citationMaerz, Tristan; Sherman, Eric; Newton, Michael; Yilmaz, Ali; Kumar, Praveen; Graham, Stewart F.; Baker, Kevin C. (2018). "Metabolomic serum profiling after ACL injury in rats: A pilot study implicating inflammation and immune dysregulation in post‐traumatic osteoarthritis." Journal of Orthopaedic Research® 36(7): 1969-1979.
dc.identifier.issn0736-0266
dc.identifier.issn1554-527X
dc.identifier.urihttps://hdl.handle.net/2027.42/145352
dc.description.abstractACL rupture is a major risk factor for post‐traumatic osteoarthritis (PTOA) development. Little information exists on acute systemic metabolic indicators of disease development. Thirty‐six female Lewis rats were randomized to Control or noninvasive anterior cruciate ligament rupture (ACLR) and to three post‐injury time points: 72 h, 4 weeks, 10 weeks (n = 6). Serum was collected and analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy and combined direct injection and liquid chromatography (LC)‐mass spectrometry (MS)/MS (DI‐MS). Univariate and multivariate statistics were used to analyze metabolomic data, and predictive biomarker models were analyzed by receiver operating characteristic (ROC) analysis. Topological pathway analysis was used to identify perturbed pathways. Two hundred twenty‐two metabolites were identified by 1H NMR and DI‐MS. Differences in the serum metabolome between ACLR and Control were dominated by medium‐ and long‐chain acylcarnitine species. Further, decreases in several tryptophan metabolites were either found to be significantly different in univariate analysis or to play important contributory roles to multivariate model separation. In addition to acylcarnitines and tryptophan metabolites, glycine, carnosine, and D‐mannose were found to differentiate ACLR from Control. Glycine, 9‐hexadecenoylcarnitine, trans‐2‐Dodecenoylcarnitine, linoelaidyl carnitine, hydroxypropionylcarnitine, and D‐Mannose were identified as biomarkers with high area under ROC curve values and high predictive accuracies. Our analysis provides new information regarding the potential contribution of inflammatory processes and immune dysregulation to the onset and progression of PTOA following ACL injury. As these processes have most commonly been associated with inflammatory arthropathies, larger‐scale studies elucidating their involvement in PTOA development and progression are necessary. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1969–1979, 2018.
dc.publisherWiley Periodicals, Inc.
dc.subject.othermetabolomics
dc.subject.otherinflammation
dc.subject.otherpost‐traumatic osteoarthritis
dc.subject.otheranterior cruciate ligament rupture
dc.subject.otherimmunity
dc.titleMetabolomic serum profiling after ACL injury in rats: A pilot study implicating inflammation and immune dysregulation in post‐traumatic osteoarthritis
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelKinesiology and Sports
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145352/1/jor23854.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145352/2/jor23854_am.pdf
dc.identifier.doi10.1002/jor.23854
dc.identifier.sourceJournal of Orthopaedic Research®
dc.identifier.citedreferenceWu T, Xie C, Han J, et al. 2012. Metabolic disturbances associated with systemic lupus erythematosus. PLoS One 7: e37210.
dc.identifier.citedreferenceMaerz T, Fleischer M, Newton MD, et al. 2017. Acute mobilization and migration of bone marrow‐derived stem cells following anterior cruciate ligament rupture. Osteoarthritis Cartilage 25: 1335 – 1344.
dc.identifier.citedreferenceMercier P, Lewis M, Chang D, et al. 2011. Towards automatic metabolomic profiling of high‐resolution one‐dimensional proton NMR spectra. J Biomol NMR 49: 307 – 323.
dc.identifier.citedreferenceRavanbakhsh S, Liu P, Bjordahl TC, et al. 2015. Accurate, fully‐automated NMR spectral profiling for metabolomics. PLoS ONE 10: e0124219.
dc.identifier.citedreferencePan X, Nasaruddin MB, Elliott CT, et al. 2016. Alzheimer’s disease‐like pathology has transient effects on the brain and blood metabolome. Neurobiol Aging 38: 151 – 163.
dc.identifier.citedreferenceXia J, Mandal R, Sinelnikov IV, et al. 2012. MetaboAnalyst 2.0‐a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40: W127 – W133.
dc.identifier.citedreferenceXia J, Sinelnikov IV, Han B, et al. 2015. MetaboAnalyst 3.0‐making metabolomics more meaningful. Nucleic Acids Res 43: W251 – W257.
dc.identifier.citedreferenceTibshirani R. 1996. Regression shrinkage and selection via the lasso. J R Stat Soc Series B Stat Methodol 267 – 288.
dc.identifier.citedreferenceGraham SF, Kumar P, Bahado‐Singh RO, et al. 2016. Novel metabolite biomarkers of Huntington’s disease (HD) as detected by high resolution mass spectrometry. J Proteome Res 15: 1592 – 1601.
dc.identifier.citedreferenceGrahama SF, Praveen KK, Bjorndahl T, et al. 2016. Metabolic signatures of Huntington’s disease (HD): 1H NMR analysis of the polar metabolome in post mortem human brain. Biochim Biophys Acta 1862: 1675 – 1684.
dc.identifier.citedreferenceShowery JE, Kusnezov NA, Dunn JC, et al. 2016. The rising incidence of degenerative and posttraumatic osteoarthritis of the knee in the United States military. J Arthroplasty 31: 2108 – 2114.
dc.identifier.citedreferencevan Wietmarschen HA, Dai W, van der Kooij AJ, et al. 2012. Characterization of rheumatoid arthritis subtypes using symptom profiles, clinical chemistry and metabolomics measurements. PLoS ONE 7: e44331.
dc.identifier.citedreferenceSurowiec I, Arlestig L, Rantapaa‐Dahlqvist S, et al. 2016. Metabolite and lipid profiling of biobank plasma samples collected prior to onset of rheumatoid arthritis. PLoS ONE 11: e0164196.
dc.identifier.citedreferenceZhang W, Likhodii S, Zhang Y, et al. 2014. Classification of osteoarthritis phenotypes by metabolomics analysis. BMJ Open 4: e006286.
dc.identifier.citedreferenceAdams SB, Jr., Setton LA, Kensicki E, et al. 2012. Global metabolic profiling of human osteoarthritic synovium. Osteoarthritis Cartilage 20: 64 – 67.
dc.identifier.citedreferenceKang KY, Lee SH, Jung SM, et al. 2015. Downregulation of tryptophan‐related metabolomic profile in rheumatoid arthritis synovial fluid. J Rheumatol 42: 2003 – 2011.
dc.identifier.citedreferenceMezrich JD, Fechner JH, Zhang X, et al. 2010. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185: 3190 – 3198.
dc.identifier.citedreferenceNguyen NT, Nakahama T, Le DH, et al. 2014. Aryl hydrocarbon receptor and kynurenine: recent advances in autoimmune disease research. Front Immunol 5: 551.
dc.identifier.citedreferenceChen SY, Wu CL, Lai MD, et al. 2011. Amelioration of rat collagen‐induced arthritis through CD4+ T cells apoptosis and synovial interleukin‐17 reduction by indoleamine 2,3‐dioxygenase gene therapy. Hum Gene Ther 22: 145 – 154.
dc.identifier.citedreferenceKarasik D, Cheung CL, Zhou Y, et al. 2012. Genome‐wide association of an integrated osteoporosis‐related phenotype: is there evidence for pleiotropic genes ? J Bone Miner Res 27: 319 – 330.
dc.identifier.citedreferenceChabbi‐Achengli Y, Coman T, Collet C, et al. 2016. Serotonin is involved in autoimmune arthritis through th17 immunity and bone resorption. Am J Pathol 186: 927 – 937.
dc.identifier.citedreferenceHuffman KM, Jessee R, Andonian B, et al. 2017. Molecular alterations in skeletal muscle in rheumatoid arthritis are related to disease activity, physical inactivity, and disability. Arthritis Res Ther 19: 12.
dc.identifier.citedreferencePonist S, Drafi F, Kuncirova V, et al. 2016. Effect of carnosine in experimental arthritis and on primary culture chondrocytes. Oxid Med Cell Longev 2016: 8470589.
dc.identifier.citedreferenceUrita A, Matsuhashi T, Onodera T, et al. 2011. Alterations of high‐mannose type N‐glycosylation in human and mouse osteoarthritis cartilage. Arthritis Rheum 63: 3428 – 3438.
dc.identifier.citedreferenceBertazzo A, Punzi L, Bertazzolo N, et al. 1999. Tryptophan catabolism in synovial fluid of various arthropathies and its relationship with inflammatory cytokines. Adv Exp Med Biol 467: 565 – 570.
dc.identifier.citedreferenceLittle CB, Hunter DJ. 2013. Post‐traumatic osteoarthritis: from mouse models to clinical trials. Nat Rev Rheumatol 9: 485 – 497.
dc.identifier.citedreferenceLohmander L, Östenberg A, Englund M, et al. 2004. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50: 3145 – 3152.
dc.identifier.citedreferenceSvoboda SJ. 2014. ACL injury and posttraumatic osteoarthritis. Clin Sports Med 33: 633 – 640.
dc.identifier.citedreferenceVon Porat A, Roos E, Roos H. 2004. High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis 63: 269 – 273.
dc.identifier.citedreferenceHeard BJ, Solbak NM, Achari Y, et al. 2013. Changes of early post‐traumatic osteoarthritis in an ovine model of simulated ACL reconstruction are associated with transient acute post‐injury synovial inflammation and tissue catabolism. Osteoarthritis Cartilage 21: 1942 – 1949.
dc.identifier.citedreferenceO’Brien EJ, Beveridge JE, Huebner KD, et al. 2013. Osteoarthritis develops in the operated joint of an ovine model following ACL reconstruction with immediate anatomic reattachment of the native ACL. J Orthop Res 31: 35 – 43.
dc.identifier.citedreferenceTourville TW, Johnson RJ, Slauterbeck JR, et al. 2013. The relationship between synovial fluid ARGS, cytokines, MMPs & TIMPs following acute ACL injury. Osteoarthritis Cartilage 21: S75.
dc.identifier.citedreferenceTang Z, Yang L, Zhang J, et al. 2009. Coordinated expression of MMPs and TIMPs in rat knee intra‐articular tissues after ACL injury. Connect Tissue Res 50: 315 – 322.
dc.identifier.citedreferenceHayward A, Deehan D, Aspden R, et al. 2011. Analysis of sequential cytokine release after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19: 1709 – 1715.
dc.identifier.citedreferenceWu Y, Yang R, Chen P, et al. 2009. The profile of MMP and TIMP in injured rat ACL. Mol Cell Biomech 7: 115 – 1124.
dc.identifier.citedreferenceFriel NA, Chu CR. 2013. The role of ACL injury in the development of posttraumatic knee osteoarthritis. Clin Sports Med 32: 1 – 12.
dc.identifier.citedreferenceLotz MK. 2010. New developments in osteoarthritis: posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Res Ther 12: 211.
dc.identifier.citedreferenceScanzello CR, Goldring SR. 2012. The role of synovitis in osteoarthritis pathogenesis. Bone 51: 249 – 257.
dc.identifier.citedreferenceMaerz T, Kurdziel M, Newton M, et al. 2016. Subchondral and epiphyseal bone remodeling following surgical transection and noninvasive rupture of the anterior cruciate ligament as models of post‐traumatic osteoarthritis. Osteoarthritis Cartilage 24: 698 – 708.
dc.identifier.citedreferenceRamme A, Lendhey M, Raya J, et al. 2016. A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post‐traumatic osteoarthritis. Osteoarthritis Cartilage 24: 1776 – 1785.
dc.identifier.citedreferenceAnderson DD, Chubinskaya S, Guilak F, et al. 2011. Post‐traumatic osteoarthritis: improved understanding and opportunities for early intervention. J Orthop Res 29: 802 – 809.
dc.identifier.citedreferenceMaerz T, Newton M, Kurdziel M, et al. 2016. Articular cartilage degeneration following anterior cruciate ligament injury: a comparison of surgical transection and noninvasive rupture as preclinical models of post‐traumatic osteoarthritis. Osteoarthritis Cartilage 24: 1918 – 1927.
dc.identifier.citedreferenceBuck R, Wyman B, Le Graverand M‐PH, et al. 2010. Osteoarthritis may not be a one‐way‐road of cartilage loss‐comparison of spatial patterns of cartilage change between osteoarthritic and healthy knees. Osteoarthritis Cartilage 18: 329 – 335.
dc.identifier.citedreferenceEckstein F, Wirth W, Lohmander L, et al. 2015. Five‐Year Followup of Knee Joint Cartilage Thickness Changes After Acute Rupture of the Anterior Cruciate Ligament. Arthritis Rheum 67: 152 – 161.
dc.identifier.citedreferenceLotz M, Martel‐Pelletier J, Christiansen C, et al. 2013. Value of biomarkers in osteoarthritis: current status and perspectives. Ann Rheum Dis 72: 1756 – 1763.
dc.identifier.citedreferenceBeckonert O, Keun HC, Ebbels TM, et al. 2007. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2: 2692 – 2703.
dc.identifier.citedreferenceMickiewicz B, Heard BJ, Chau JK, et al. 2015. Metabolic profiling of synovial fluid in a unilateral ovine model of anterior cruciate ligament reconstruction of the knee suggests biomarkers for early osteoarthritis. J Orthop Res 33: 71 – 77.
dc.identifier.citedreferenceMickiewicz B, Kelly JJ, Ludwig TE, et al. 2015. Metabolic analysis of knee synovial fluid as a potential diagnostic approach for osteoarthritis. J Orthop Res 33: 1631 – 1638.
dc.identifier.citedreferenceZhang W, Sun G, Likhodii S, et al. 2016. Metabolomic analysis of human plasma reveals that arginine is depleted in knee osteoarthritis patients. Osteoarthritis Cartilage 24: 827 – 834.
dc.identifier.citedreferenceAdams SB, Jr, Setton LA, Nettles DL. 2013. The role of metabolomics in osteoarthritis research. J Am Acad Orthop Surg 21: 63.
dc.identifier.citedreferenceMaerz T, Kurdziel MD, Davidson AA, et al. 2015. Biomechanical characterization of a model of noninvasive, traumatic anterior cruciate ligament injury in the rat. Ann Biomed Eng 43: 2467 – 2476.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.