Show simple item record

Formation and Evolution of Low‐Latitude F Region Field‐Aligned Irregularities During the 7–8 September 2017 Storm: Hainan Coherent Scatter Phased Array Radar and Digisonde Observations

dc.contributor.authorJin, Han
dc.contributor.authorZou, Shasha
dc.contributor.authorChen, Gang
dc.contributor.authorYan, Chunxiao
dc.contributor.authorZhang, Shaodong
dc.contributor.authorYang, Guotao
dc.date.accessioned2018-08-13T18:52:34Z
dc.date.available2019-08-01T19:53:23Zen
dc.date.issued2018-06
dc.identifier.citationJin, Han; Zou, Shasha; Chen, Gang; Yan, Chunxiao; Zhang, Shaodong; Yang, Guotao (2018). "Formation and Evolution of Low‐Latitude F Region Field‐Aligned Irregularities During the 7–8 September 2017 Storm: Hainan Coherent Scatter Phased Array Radar and Digisonde Observations." Space Weather 16(6): 648-659.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/145366
dc.description.abstractIn this paper, we present a study of the low‐latitude field‐aligned irregularities formation and evolution during the 7–8 September 2017 geomagnetic storm by analyzing data of the very high frequency coherent radar installed at Fuke, Hainan Island of China (19.5°N, 109.1°E; magnetic latitude 9.58°N) and a colocated Digisonde Portable Sounder. The prompt penetration of eastward interplanetary electric field associated with sudden southward turning of the interplanetary magnetic field Bz resulted in large ascent of the F layer, making conducive conditions at the bottomside of the layer for the growth of Rayleigh‐Taylor instability and the development of the plasma irregularities in the postsunset hours. The irregularities persisted into the postmidnight sector when the southward interplanetary magnetic field Bz gradually decreased to the quiet time values. In addition, the base height of F layer at Fuke also showed a large elevation after midnight during two consecutive substorm onsets, suggesting that the substorm‐induced overshielding penetration electric field may take over and modify the ambient zonal electric field in low‐latitude ionosphere and induce the irregularities in the postmidnight sector. Moreover, different from the quiet time eastward movement of the irregularities observed over Fuke, the storm time irregularities displayed no zonal drift at the initial period and subsequently began drifting westward. The reversal of background plasma zonal drift velocity observed by Hainan digisonde characterized the storm time zonal drift pattern of the irregularities.Key PointsLow‐latitude ionospheric observations by seven‐beam (east‐west plane) VHF radar operated at Fuke, China, and a nearby digisondeStorm‐induced PPEF is responsible for postsunset FAIs, and substorm‐related overshielding E field leads to postmidnight FAIsPlasma bubble irregularities showed dominantly westward drift rather than the eastward drift normally observed under quiet conditions
dc.publisherWiley Periodicals, Inc.
dc.titleFormation and Evolution of Low‐Latitude F Region Field‐Aligned Irregularities During the 7–8 September 2017 Storm: Hainan Coherent Scatter Phased Array Radar and Digisonde Observations
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145366/1/swe20697_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145366/2/swe20697.pdf
dc.identifier.doi10.1029/2018SW001865
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceReinisch, B. W., Scali, J. L., & Haines, D. L. ( 1998 ). Ionospheric drift measurements with ionosondes. Annali di Geofisica, 41, 695 – 702.
dc.identifier.citedreferencePatra, A. K., Chaitanya, P. P., Dashora, N., Sivakandan, M., & Taori, A. ( 2016 ). Highly localized unique electrodynamics and plasma irregularities linked with the 17 March 2015 severe magnetic storm observed using multitechnique common‐volume observations from Gadanki, India. Journal of Geophysical Research: Space Physics, 121, 11,518 – 11,511. https://doi.org/10.1002/2016JA023384
dc.identifier.citedreferencePatra, A. K., Srinivasulu, P., Chaitanya, P. P., Rao, M. D., & Jayaraman, A. ( 2014 ). First results on low‐latitude E and F region irregularities obtained using the Gadanki Ionospheric Radar Interferometer. Journal of Geophysical Research: Space Physics, 119, 10,276 – 10,210. https://doi.org/10.1002/2014JA020604
dc.identifier.citedreferencePi, X., Mannucci, A. J., Lindqwister, U. J., & Ho, C. M. ( 1997 ). Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophysical Research Letters, 24 ( 18 ), 2283 – 2286.
dc.identifier.citedreferenceRajesh, P. K., Lin, C. H., Chen, C. H., Lin, J. T., Matsuo, T., Chou, M. Y., et al. ( 2017 ). Equatorial plasma bubble generation/inhibition during 2015 St. Patrick’s Day storm. Space Weather, 15, 1141 – 1150. https://doi.org/10.1002/2017SW001641
dc.identifier.citedreferenceRastogi, R. G. ( 1980 ). Seasonal variation of equatorial spread F in the American and Indian zones. Journal of Geophysical Research: Space Physics, 85 ( A2 ), 722 – 726.
dc.identifier.citedreferenceReinisch, B. W., Galkin, I. A., Khmyrov, G. M., Kozlov, A. V., Bibl, K., Lisysyan, I. A., et al. ( 2009 ). New Digisonde for research and monitoring applications. Radio Science, 44, RS0A24. https://doi.org/10.1029/2008RS004115
dc.identifier.citedreferenceShen, C., Chi, Y., Wang, Y., Xu, M., & Wang, S. ( 2017 ). Statistical comparison of the ICME’s geoeffectiveness of different types and different solar phases from 1995 to 2014. Journal of Geophysical Research: Space Physics, 122, 5931 – 5948. https://doi.org/10.1002/2016JA023768
dc.identifier.citedreferenceSobral, J. H. A., Abdu, M. A., Pedersen, T. R., Castilho, V. M., Arruda, D. C. S., Muella, M. T. A. H., et al. ( 2009 ). Ionospheric zonal velocities at conjugate points over Brazil during the COPEX campaign: Experimental observations and theoretical validations. Journal of Geophysical Research, 114, A04309. https://doi.org/10.1029/2008JA013896
dc.identifier.citedreferenceTsunoda, R. T. ( 1980 ). On the spatial relationship of 1‐m equatorial spread F irregularities and plasma bubbles. Journal of Geophysical Research, 85 ( A1 ), 185 – 190.
dc.identifier.citedreferenceTulasi Ram, S., Rama Rao, P. V. S., Prasad, D. S. V. V. D., Niranjan, K., Gopi Krishna, S., Sridharan, R., & Ravindran, S. ( 2008 ). Local time dependent response of postsunset ESF during geomagnetic storms. Journal of Geophysical Research, 113, A07310. https://doi.org/10.1029/2007JA012922
dc.identifier.citedreferenceWang, C. ( 2010 ). New chains of space weather monitoring stations in China. Space Weather, 8, S08001. https://doi.org/10.1029/2010SW000603
dc.identifier.citedreferenceWei, Y., Pu, Z., Hong, M., Zong, Q., Ren, Z., Fu, S., et al. ( 2009 ). Westward ionospheric electric field perturbations on the dayside associated with substorm processes. Journal of Geophysical Research, 114, A12209. https://doi.org/10.1029/2009JA014445
dc.identifier.citedreferenceWoodman, R. F. ( 1970 ). Vertical drift velocities and east‐west electric fields at the magnetic equator. Journal of Geophysical Research, 75 ( 31 ), 6249 – 6259. https://doi.org/10.1029/JA075i031p06249
dc.identifier.citedreferenceWoodman, R. F. ( 2009 ). Spread F —An old equatorial aeronomy problem finally resolved? Annales de Geophysique, 27 ( 5 ), 1915 – 1934.
dc.identifier.citedreferenceWoodman, R. F., & LaHoz, C. ( 1976 ). Radar observations of F region equatorial irregularities. Journal of Geophysical Research, 81 ( 31 ), 5447 – 5461.
dc.identifier.citedreferenceYokoyama, T., Fukao, S., & Yamamoto, M. ( 2004 ). Relationship of the onset of equatorial F region irregularities with the sunset terminator observed with the Equatorial Atmosphere Radar. Geophysical Research Letters, 31, L24804. https://doi.org/10.1029/2004GL021529
dc.identifier.citedreferenceYokoyama, T., & Fukao, S. ( 2006 ). Upwelling backscatter plumes in growth phase of equatorial spread F observed with the Equatorial Atmosphere Radar. Geophysical Research Letters, 33, L08104. https://doi.org/10.1029/2006GL025680
dc.identifier.citedreferenceZhang, J.‐C., Wolf, R. A., Spiro, R. W., Erickson, G. M., Sazykin, S., Toffoletto, F. R., & Yang, J. ( 2009 ). Rice Convection Model simulation of the substorm‐associated injection of an observed plasma bubble into the inner magnetosphere: 2. Simulation results., Journal of Geophysical Research, 114, A08219. https://doi.org/10.1029/2009JA014131
dc.identifier.citedreferenceShen, C., Xu, M., Wang, Y., Chi, Y., & Luo, B. ( 2018 ). Why the Shock‐ICME Complex Structure is Important: Learning From the Early 2017 September CMEs. arXiv preprint arXiv:1805.05763.
dc.identifier.citedreferenceAa, E., Huang, W., Liu, S., Ridley, A. J., Zou, S., Shi, L., et al. ( 2018 ). Mid‐latitude plasma bubble over China and adjacent areas during a magnetic storm on 08 September 2017. Space Weather, 16. https://doi.org/10.1002/2017SW001766
dc.identifier.citedreferenceAbdu, M. A. ( 2012 ). Equatorial spread F /plasma bubble irregularities under storm time disturbance electric fields. Journal of Atmospheric and Solar: Terrestrial Physics, 75, 44 – 56.
dc.identifier.citedreferenceAbdu, M. A., Batista, I. S., Takahashi, H., MacDougall, J., Sobral, J. H., Medeiros, A. F., & Trivedi, N. B. ( 2003 ). Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector. Journal of Geophysical Research, 108 ( A12 ), 1449. https://doi.org/10.1029/2002JA009721
dc.identifier.citedreferenceAbdu, M. A., Kherani, E. A., Batista, I. S., & Sobral, J. H. A. ( 2009 ). Equatorial evening prereversal vertical drift and spread F suppression by disturbance penetration electric fields. Geophysical Research Letters, 36, L19103. https://doi.org/10.1029/2009GL039919
dc.identifier.citedreferenceAbdu, M. A., Sastri, M. A., MacDougall, J., Batista, I. S., & Sobral, J. H. A. ( 1997 ). Equatorial disturbance dynamo electric field, longitudinal structure and spread F: A case study from GUARA/EITS campaigns. Geophysical Research Letters, 24 ( 13 ), 1707 – 1710.
dc.identifier.citedreferenceBasu, S., Basu, S., Groves, K. M., Yeh, H. C., Su, S. Y., Rich, F. J., et al. ( 2001 ). Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000. Geophysical Research Letters, 28 ( 18 ), 3577 – 3580. https://doi.org/10.1029/2001GL013259
dc.identifier.citedreferenceBasu, S., Basu, S., MacKenzie, E., Bridgwood, C., Valladares, C. E., Groves, K. M., & Carrano, C. ( 2010 ). Specification of the occurrence of equatorial ionospheric scintillations during the main phase of large magnetic storms within solar cycle 23. Radio Science, 45, RS5009. https://doi.org/10.1029/2009RS004343
dc.identifier.citedreferenceBlanc, M., & Richmond, A. D. ( 1980 ). The ionospheric disturbance dynamo. Journal of Geophysical Research, 85 ( A4 ), 1669 – 1688. https://doi.org/10.1029/JA085iA04p01669
dc.identifier.citedreferenceBurke, W. J., Gentile, L. C., Huang, C. Y., Valladares, C. E., & Su, S. Y. ( 2004 ). Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT‐1. Journal of Geophysical Research, 109, A12301. https://doi.org/10.1029/2004JA010583
dc.identifier.citedreferenceChen, G., Jin, H., Yan, J., Cui, X., Zhang, S., Yan, C., et al. ( 2017 ). Hainan Coherent Scatter Phased Array Radar (HCOPAR): System design and ionospheric irregularity observations. IEEE Transactions on Geoscience and Remote Sensing, 55 ( 8 ), 4757 – 4765.
dc.identifier.citedreferenceChen, W. S., Lee, C. C., Liu, J. Y., Chu, F. D., & Reinisch, B. W. ( 2006 ). Digisonde spread F and GPS phase fluctuations in the equatorial ionosphere during solar maximum. Journal of Geophysical Research, 111, A12305. https://doi.org/10.1029/2006JA011688
dc.identifier.citedreferenceFujita, S., Kikuchi, T., & Tanaka, T. ( 2010 ). State transition of the magnetosphere‐ionosphere compound system due to a northward turn of the interplanetary magnetic field revealed from a global magnetohydrodynamic simulation and formation of the overshielding potential. Journal of Geophysical Research, 115, A11210. https://doi.org/10.1029/2010JA015550
dc.identifier.citedreferenceHashimoto, K. K., Kikuchi, T., Watari, S., & Abdu, M. A. ( 2011 ). Polar‐equatorial ionospheric currents driven by the region 2 field‐aligned currents at the onset of substorms. Journal of Geophysical Research, 116, A0921. https://doi.org/10.1029/2011JA016442
dc.identifier.citedreferenceHeelis, R. A. ( 2004 ). Electrodynamics in the low and middle latitude ionosphere: A tutorial. Journal of Atmospheric and Solar: Terrestrial Physics, 66 ( 10 ), 825 – 838.
dc.identifier.citedreferenceHickey, D. A., Martinis, C. R., Rodrigues, F. S., Varney, R. H., Milla, M. A., Nicolls, M. J., et al. ( 2015 ). Concurrent observations at the magnetic equator of small‐scale irregularities and large‐scale depletions associated with equatorial spread F. Journal of Geophysical Research: Space Physics, 120, 10,883 – 10,896. https://doi.org/10.1002/2015JA021991
dc.identifier.citedreferenceHuang, C.‐S., de La Beaujardiere, O., Roddy, P. A., Hunton, D. E., Ballenthin, J. O., & Hairston, M. R. ( 2012 ). Generation and characteristics of equatorial plasma bubbles detected by the C/NOFS satellite near the sunset terminator. Journal of Geophysical Research, 117, A11313. https://doi.org/10.1029/2012JA018163
dc.identifier.citedreferenceHuang, C.‐S., de La Beaujardiere, O., Roddy, P. A., Hunton, D. E., Liu, J. Y., & Chen, S. P. ( 2014 ). Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008–2012). Journal of Geophysical Research: Space Physics, 119, 1186 – 1199. https://doi.org/10.1002/2013JA019212
dc.identifier.citedreferenceHuba, J. D., & Joyce, G. ( 2010 ). Global modeling of equatorial plasma bubbles. Geophysical Research Letters, 37, L17104. https://doi.org/10.1029/2010GL044281
dc.identifier.citedreferenceKikuchi, T., Hashimoto, K. K., Kitamura, T.‐I., Tachihara, H., & Fejer, B. ( 2003 ). Equatorial counterelectrojets during substorms. Journal of Geophysical Research, 108 ( A11 ), 1406. https://doi.org/10.1029/2003JA009915
dc.identifier.citedreferenceKikuchi, T., Hashimoto, K. K., & Nozaki, K. ( 2008 ). Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. Journal of Geophysical Research, 113, A06214. https://doi.org/10.1029/2007JA012628
dc.identifier.citedreferenceKil, H., & Heelis, R. A. ( 1998 ). Global distribution of density irregularities in the equatorial ionosphere. Journal of Geophysical Research, 103 ( A1 ), 407 – 417. https://doi.org/10.1029/97JA02698
dc.identifier.citedreferenceLee, C. C., Liu, J. Y., Reinisch, B. W., Chen, W. S., & Chu, F. D. ( 2005 ). The effects of the pre‐reversal E × B drift, the EIA asymmetry, and magnetic activity on the equatorial spread F during solar maximum. Annales de Geophysique, 23 ( 3 ), 745 – 751.
dc.identifier.citedreferenceLi, G., Ning, B., Abdu, M. A., Otsuka, Y., Yokoyama, T., Yamamoto, M., & Liu, L. ( 2013 ). Longitudinal characteristics of spread F backscatter plumes observed with the EAR and Sanya VHF radar in Southeast Asia. Journal of Geophysical Research: Space Physics, 118, 6544 – 6557. https://doi.org/10.1002/jgra.50581
dc.identifier.citedreferenceLi, G., Ning, B., Hu, L., Liu, L., Yue, X., Wan, W., et al. ( 2010 ). Longitudinal development of low‐latitude ionospheric irregularities during the geomagnetic storms of July 2004. Journal of Geophysical Research, 115, A04304. https://doi.org/10.1029/2009JA014830
dc.identifier.citedreferenceMa, G., & Maruyama, T. ( 2006 ). A super bubble detected by dense GPS network at east Asian longitudes. Geophysical Research Letters, 33, L21103. https://doi.org/10.1029/2006GL027512
dc.identifier.citedreferenceMartinis, C. R., Mendillo, M. J., & Aarons, J. ( 2005 ). Toward a synthesis of equatorial spread F onset and suppression during geomagnetic storms. Journal of Geophysical Research, 110, A07306. https://doi.org/10.1029/2003JA010362
dc.identifier.citedreferenceNishida, A. ( 1968 ). Coherence of geomagnetic DP 2 fluctuations with interplanetary magnetic variations. Journal of Geophysical Research, 73 ( 17 ), 5549 – 5559. https://doi.org/10.1029/JA073i017p05549
dc.identifier.citedreferenceOtsuka, Y., Shiokawa, K., Ogawa, T., Yokoyama, T., Yamamoto, M., & Fukao, S. ( 2004 ). Spatial relationship of equatorial plasma bubbles and field‐aligned irregularities observed with an all‐sky airglow imager and the Equatorial Atmosphere Radar. Geophysical Research Letters, 31, L20802. https://doi.org/10.1029/2004GL020869
dc.identifier.citedreferenceOtt, E. ( 1978 ). Theory of Rayleigh‐Taylor bubbles in the equatorial ionosphere. Journal of Geophysical Research, 83 ( A5 ), 2066.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.