Formation and Evolution of Low‐Latitude F Region Field‐Aligned Irregularities During the 7–8 September 2017 Storm: Hainan Coherent Scatter Phased Array Radar and Digisonde Observations
dc.contributor.author | Jin, Han | |
dc.contributor.author | Zou, Shasha | |
dc.contributor.author | Chen, Gang | |
dc.contributor.author | Yan, Chunxiao | |
dc.contributor.author | Zhang, Shaodong | |
dc.contributor.author | Yang, Guotao | |
dc.date.accessioned | 2018-08-13T18:52:34Z | |
dc.date.available | 2019-08-01T19:53:23Z | en |
dc.date.issued | 2018-06 | |
dc.identifier.citation | Jin, Han; Zou, Shasha; Chen, Gang; Yan, Chunxiao; Zhang, Shaodong; Yang, Guotao (2018). "Formation and Evolution of Low‐Latitude F Region Field‐Aligned Irregularities During the 7–8 September 2017 Storm: Hainan Coherent Scatter Phased Array Radar and Digisonde Observations." Space Weather 16(6): 648-659. | |
dc.identifier.issn | 1542-7390 | |
dc.identifier.issn | 1542-7390 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/145366 | |
dc.description.abstract | In this paper, we present a study of the low‐latitude field‐aligned irregularities formation and evolution during the 7–8 September 2017 geomagnetic storm by analyzing data of the very high frequency coherent radar installed at Fuke, Hainan Island of China (19.5°N, 109.1°E; magnetic latitude 9.58°N) and a colocated Digisonde Portable Sounder. The prompt penetration of eastward interplanetary electric field associated with sudden southward turning of the interplanetary magnetic field Bz resulted in large ascent of the F layer, making conducive conditions at the bottomside of the layer for the growth of Rayleigh‐Taylor instability and the development of the plasma irregularities in the postsunset hours. The irregularities persisted into the postmidnight sector when the southward interplanetary magnetic field Bz gradually decreased to the quiet time values. In addition, the base height of F layer at Fuke also showed a large elevation after midnight during two consecutive substorm onsets, suggesting that the substorm‐induced overshielding penetration electric field may take over and modify the ambient zonal electric field in low‐latitude ionosphere and induce the irregularities in the postmidnight sector. Moreover, different from the quiet time eastward movement of the irregularities observed over Fuke, the storm time irregularities displayed no zonal drift at the initial period and subsequently began drifting westward. The reversal of background plasma zonal drift velocity observed by Hainan digisonde characterized the storm time zonal drift pattern of the irregularities.Key PointsLow‐latitude ionospheric observations by seven‐beam (east‐west plane) VHF radar operated at Fuke, China, and a nearby digisondeStorm‐induced PPEF is responsible for postsunset FAIs, and substorm‐related overshielding E field leads to postmidnight FAIsPlasma bubble irregularities showed dominantly westward drift rather than the eastward drift normally observed under quiet conditions | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.title | Formation and Evolution of Low‐Latitude F Region Field‐Aligned Irregularities During the 7–8 September 2017 Storm: Hainan Coherent Scatter Phased Array Radar and Digisonde Observations | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Electrical Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/145366/1/swe20697_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/145366/2/swe20697.pdf | |
dc.identifier.doi | 10.1029/2018SW001865 | |
dc.identifier.source | Space Weather | |
dc.identifier.citedreference | Reinisch, B. W., Scali, J. L., & Haines, D. L. ( 1998 ). Ionospheric drift measurements with ionosondes. Annali di Geofisica, 41, 695 – 702. | |
dc.identifier.citedreference | Patra, A. K., Chaitanya, P. P., Dashora, N., Sivakandan, M., & Taori, A. ( 2016 ). Highly localized unique electrodynamics and plasma irregularities linked with the 17 March 2015 severe magnetic storm observed using multitechnique common‐volume observations from Gadanki, India. Journal of Geophysical Research: Space Physics, 121, 11,518 – 11,511. https://doi.org/10.1002/2016JA023384 | |
dc.identifier.citedreference | Patra, A. K., Srinivasulu, P., Chaitanya, P. P., Rao, M. D., & Jayaraman, A. ( 2014 ). First results on low‐latitude E and F region irregularities obtained using the Gadanki Ionospheric Radar Interferometer. Journal of Geophysical Research: Space Physics, 119, 10,276 – 10,210. https://doi.org/10.1002/2014JA020604 | |
dc.identifier.citedreference | Pi, X., Mannucci, A. J., Lindqwister, U. J., & Ho, C. M. ( 1997 ). Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophysical Research Letters, 24 ( 18 ), 2283 – 2286. | |
dc.identifier.citedreference | Rajesh, P. K., Lin, C. H., Chen, C. H., Lin, J. T., Matsuo, T., Chou, M. Y., et al. ( 2017 ). Equatorial plasma bubble generation/inhibition during 2015 St. Patrick’s Day storm. Space Weather, 15, 1141 – 1150. https://doi.org/10.1002/2017SW001641 | |
dc.identifier.citedreference | Rastogi, R. G. ( 1980 ). Seasonal variation of equatorial spread F in the American and Indian zones. Journal of Geophysical Research: Space Physics, 85 ( A2 ), 722 – 726. | |
dc.identifier.citedreference | Reinisch, B. W., Galkin, I. A., Khmyrov, G. M., Kozlov, A. V., Bibl, K., Lisysyan, I. A., et al. ( 2009 ). New Digisonde for research and monitoring applications. Radio Science, 44, RS0A24. https://doi.org/10.1029/2008RS004115 | |
dc.identifier.citedreference | Shen, C., Chi, Y., Wang, Y., Xu, M., & Wang, S. ( 2017 ). Statistical comparison of the ICME’s geoeffectiveness of different types and different solar phases from 1995 to 2014. Journal of Geophysical Research: Space Physics, 122, 5931 – 5948. https://doi.org/10.1002/2016JA023768 | |
dc.identifier.citedreference | Sobral, J. H. A., Abdu, M. A., Pedersen, T. R., Castilho, V. M., Arruda, D. C. S., Muella, M. T. A. H., et al. ( 2009 ). Ionospheric zonal velocities at conjugate points over Brazil during the COPEX campaign: Experimental observations and theoretical validations. Journal of Geophysical Research, 114, A04309. https://doi.org/10.1029/2008JA013896 | |
dc.identifier.citedreference | Tsunoda, R. T. ( 1980 ). On the spatial relationship of 1‐m equatorial spread F irregularities and plasma bubbles. Journal of Geophysical Research, 85 ( A1 ), 185 – 190. | |
dc.identifier.citedreference | Tulasi Ram, S., Rama Rao, P. V. S., Prasad, D. S. V. V. D., Niranjan, K., Gopi Krishna, S., Sridharan, R., & Ravindran, S. ( 2008 ). Local time dependent response of postsunset ESF during geomagnetic storms. Journal of Geophysical Research, 113, A07310. https://doi.org/10.1029/2007JA012922 | |
dc.identifier.citedreference | Wang, C. ( 2010 ). New chains of space weather monitoring stations in China. Space Weather, 8, S08001. https://doi.org/10.1029/2010SW000603 | |
dc.identifier.citedreference | Wei, Y., Pu, Z., Hong, M., Zong, Q., Ren, Z., Fu, S., et al. ( 2009 ). Westward ionospheric electric field perturbations on the dayside associated with substorm processes. Journal of Geophysical Research, 114, A12209. https://doi.org/10.1029/2009JA014445 | |
dc.identifier.citedreference | Woodman, R. F. ( 1970 ). Vertical drift velocities and east‐west electric fields at the magnetic equator. Journal of Geophysical Research, 75 ( 31 ), 6249 – 6259. https://doi.org/10.1029/JA075i031p06249 | |
dc.identifier.citedreference | Woodman, R. F. ( 2009 ). Spread F —An old equatorial aeronomy problem finally resolved? Annales de Geophysique, 27 ( 5 ), 1915 – 1934. | |
dc.identifier.citedreference | Woodman, R. F., & LaHoz, C. ( 1976 ). Radar observations of F region equatorial irregularities. Journal of Geophysical Research, 81 ( 31 ), 5447 – 5461. | |
dc.identifier.citedreference | Yokoyama, T., Fukao, S., & Yamamoto, M. ( 2004 ). Relationship of the onset of equatorial F region irregularities with the sunset terminator observed with the Equatorial Atmosphere Radar. Geophysical Research Letters, 31, L24804. https://doi.org/10.1029/2004GL021529 | |
dc.identifier.citedreference | Yokoyama, T., & Fukao, S. ( 2006 ). Upwelling backscatter plumes in growth phase of equatorial spread F observed with the Equatorial Atmosphere Radar. Geophysical Research Letters, 33, L08104. https://doi.org/10.1029/2006GL025680 | |
dc.identifier.citedreference | Zhang, J.‐C., Wolf, R. A., Spiro, R. W., Erickson, G. M., Sazykin, S., Toffoletto, F. R., & Yang, J. ( 2009 ). Rice Convection Model simulation of the substorm‐associated injection of an observed plasma bubble into the inner magnetosphere: 2. Simulation results., Journal of Geophysical Research, 114, A08219. https://doi.org/10.1029/2009JA014131 | |
dc.identifier.citedreference | Shen, C., Xu, M., Wang, Y., Chi, Y., & Luo, B. ( 2018 ). Why the Shock‐ICME Complex Structure is Important: Learning From the Early 2017 September CMEs. arXiv preprint arXiv:1805.05763. | |
dc.identifier.citedreference | Aa, E., Huang, W., Liu, S., Ridley, A. J., Zou, S., Shi, L., et al. ( 2018 ). Mid‐latitude plasma bubble over China and adjacent areas during a magnetic storm on 08 September 2017. Space Weather, 16. https://doi.org/10.1002/2017SW001766 | |
dc.identifier.citedreference | Abdu, M. A. ( 2012 ). Equatorial spread F /plasma bubble irregularities under storm time disturbance electric fields. Journal of Atmospheric and Solar: Terrestrial Physics, 75, 44 – 56. | |
dc.identifier.citedreference | Abdu, M. A., Batista, I. S., Takahashi, H., MacDougall, J., Sobral, J. H., Medeiros, A. F., & Trivedi, N. B. ( 2003 ). Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector. Journal of Geophysical Research, 108 ( A12 ), 1449. https://doi.org/10.1029/2002JA009721 | |
dc.identifier.citedreference | Abdu, M. A., Kherani, E. A., Batista, I. S., & Sobral, J. H. A. ( 2009 ). Equatorial evening prereversal vertical drift and spread F suppression by disturbance penetration electric fields. Geophysical Research Letters, 36, L19103. https://doi.org/10.1029/2009GL039919 | |
dc.identifier.citedreference | Abdu, M. A., Sastri, M. A., MacDougall, J., Batista, I. S., & Sobral, J. H. A. ( 1997 ). Equatorial disturbance dynamo electric field, longitudinal structure and spread F: A case study from GUARA/EITS campaigns. Geophysical Research Letters, 24 ( 13 ), 1707 – 1710. | |
dc.identifier.citedreference | Basu, S., Basu, S., Groves, K. M., Yeh, H. C., Su, S. Y., Rich, F. J., et al. ( 2001 ). Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000. Geophysical Research Letters, 28 ( 18 ), 3577 – 3580. https://doi.org/10.1029/2001GL013259 | |
dc.identifier.citedreference | Basu, S., Basu, S., MacKenzie, E., Bridgwood, C., Valladares, C. E., Groves, K. M., & Carrano, C. ( 2010 ). Specification of the occurrence of equatorial ionospheric scintillations during the main phase of large magnetic storms within solar cycle 23. Radio Science, 45, RS5009. https://doi.org/10.1029/2009RS004343 | |
dc.identifier.citedreference | Blanc, M., & Richmond, A. D. ( 1980 ). The ionospheric disturbance dynamo. Journal of Geophysical Research, 85 ( A4 ), 1669 – 1688. https://doi.org/10.1029/JA085iA04p01669 | |
dc.identifier.citedreference | Burke, W. J., Gentile, L. C., Huang, C. Y., Valladares, C. E., & Su, S. Y. ( 2004 ). Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT‐1. Journal of Geophysical Research, 109, A12301. https://doi.org/10.1029/2004JA010583 | |
dc.identifier.citedreference | Chen, G., Jin, H., Yan, J., Cui, X., Zhang, S., Yan, C., et al. ( 2017 ). Hainan Coherent Scatter Phased Array Radar (HCOPAR): System design and ionospheric irregularity observations. IEEE Transactions on Geoscience and Remote Sensing, 55 ( 8 ), 4757 – 4765. | |
dc.identifier.citedreference | Chen, W. S., Lee, C. C., Liu, J. Y., Chu, F. D., & Reinisch, B. W. ( 2006 ). Digisonde spread F and GPS phase fluctuations in the equatorial ionosphere during solar maximum. Journal of Geophysical Research, 111, A12305. https://doi.org/10.1029/2006JA011688 | |
dc.identifier.citedreference | Fujita, S., Kikuchi, T., & Tanaka, T. ( 2010 ). State transition of the magnetosphere‐ionosphere compound system due to a northward turn of the interplanetary magnetic field revealed from a global magnetohydrodynamic simulation and formation of the overshielding potential. Journal of Geophysical Research, 115, A11210. https://doi.org/10.1029/2010JA015550 | |
dc.identifier.citedreference | Hashimoto, K. K., Kikuchi, T., Watari, S., & Abdu, M. A. ( 2011 ). Polar‐equatorial ionospheric currents driven by the region 2 field‐aligned currents at the onset of substorms. Journal of Geophysical Research, 116, A0921. https://doi.org/10.1029/2011JA016442 | |
dc.identifier.citedreference | Heelis, R. A. ( 2004 ). Electrodynamics in the low and middle latitude ionosphere: A tutorial. Journal of Atmospheric and Solar: Terrestrial Physics, 66 ( 10 ), 825 – 838. | |
dc.identifier.citedreference | Hickey, D. A., Martinis, C. R., Rodrigues, F. S., Varney, R. H., Milla, M. A., Nicolls, M. J., et al. ( 2015 ). Concurrent observations at the magnetic equator of small‐scale irregularities and large‐scale depletions associated with equatorial spread F. Journal of Geophysical Research: Space Physics, 120, 10,883 – 10,896. https://doi.org/10.1002/2015JA021991 | |
dc.identifier.citedreference | Huang, C.‐S., de La Beaujardiere, O., Roddy, P. A., Hunton, D. E., Ballenthin, J. O., & Hairston, M. R. ( 2012 ). Generation and characteristics of equatorial plasma bubbles detected by the C/NOFS satellite near the sunset terminator. Journal of Geophysical Research, 117, A11313. https://doi.org/10.1029/2012JA018163 | |
dc.identifier.citedreference | Huang, C.‐S., de La Beaujardiere, O., Roddy, P. A., Hunton, D. E., Liu, J. Y., & Chen, S. P. ( 2014 ). Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008–2012). Journal of Geophysical Research: Space Physics, 119, 1186 – 1199. https://doi.org/10.1002/2013JA019212 | |
dc.identifier.citedreference | Huba, J. D., & Joyce, G. ( 2010 ). Global modeling of equatorial plasma bubbles. Geophysical Research Letters, 37, L17104. https://doi.org/10.1029/2010GL044281 | |
dc.identifier.citedreference | Kikuchi, T., Hashimoto, K. K., Kitamura, T.‐I., Tachihara, H., & Fejer, B. ( 2003 ). Equatorial counterelectrojets during substorms. Journal of Geophysical Research, 108 ( A11 ), 1406. https://doi.org/10.1029/2003JA009915 | |
dc.identifier.citedreference | Kikuchi, T., Hashimoto, K. K., & Nozaki, K. ( 2008 ). Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. Journal of Geophysical Research, 113, A06214. https://doi.org/10.1029/2007JA012628 | |
dc.identifier.citedreference | Kil, H., & Heelis, R. A. ( 1998 ). Global distribution of density irregularities in the equatorial ionosphere. Journal of Geophysical Research, 103 ( A1 ), 407 – 417. https://doi.org/10.1029/97JA02698 | |
dc.identifier.citedreference | Lee, C. C., Liu, J. Y., Reinisch, B. W., Chen, W. S., & Chu, F. D. ( 2005 ). The effects of the pre‐reversal E × B drift, the EIA asymmetry, and magnetic activity on the equatorial spread F during solar maximum. Annales de Geophysique, 23 ( 3 ), 745 – 751. | |
dc.identifier.citedreference | Li, G., Ning, B., Abdu, M. A., Otsuka, Y., Yokoyama, T., Yamamoto, M., & Liu, L. ( 2013 ). Longitudinal characteristics of spread F backscatter plumes observed with the EAR and Sanya VHF radar in Southeast Asia. Journal of Geophysical Research: Space Physics, 118, 6544 – 6557. https://doi.org/10.1002/jgra.50581 | |
dc.identifier.citedreference | Li, G., Ning, B., Hu, L., Liu, L., Yue, X., Wan, W., et al. ( 2010 ). Longitudinal development of low‐latitude ionospheric irregularities during the geomagnetic storms of July 2004. Journal of Geophysical Research, 115, A04304. https://doi.org/10.1029/2009JA014830 | |
dc.identifier.citedreference | Ma, G., & Maruyama, T. ( 2006 ). A super bubble detected by dense GPS network at east Asian longitudes. Geophysical Research Letters, 33, L21103. https://doi.org/10.1029/2006GL027512 | |
dc.identifier.citedreference | Martinis, C. R., Mendillo, M. J., & Aarons, J. ( 2005 ). Toward a synthesis of equatorial spread F onset and suppression during geomagnetic storms. Journal of Geophysical Research, 110, A07306. https://doi.org/10.1029/2003JA010362 | |
dc.identifier.citedreference | Nishida, A. ( 1968 ). Coherence of geomagnetic DP 2 fluctuations with interplanetary magnetic variations. Journal of Geophysical Research, 73 ( 17 ), 5549 – 5559. https://doi.org/10.1029/JA073i017p05549 | |
dc.identifier.citedreference | Otsuka, Y., Shiokawa, K., Ogawa, T., Yokoyama, T., Yamamoto, M., & Fukao, S. ( 2004 ). Spatial relationship of equatorial plasma bubbles and field‐aligned irregularities observed with an all‐sky airglow imager and the Equatorial Atmosphere Radar. Geophysical Research Letters, 31, L20802. https://doi.org/10.1029/2004GL020869 | |
dc.identifier.citedreference | Ott, E. ( 1978 ). Theory of Rayleigh‐Taylor bubbles in the equatorial ionosphere. Journal of Geophysical Research, 83 ( A5 ), 2066. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.