Show simple item record

Room‐Temperature Ferroelectricity in an Organic Cocrystal

dc.contributor.authorWiscons, Ren A.
dc.contributor.authorGoud, N. Rajesh
dc.contributor.authorDamron, Joshua T.
dc.contributor.authorMatzger, Adam J.
dc.date.accessioned2018-08-13T18:52:36Z
dc.date.available2019-09-04T20:15:38Zen
dc.date.issued2018-07-16
dc.identifier.citationWiscons, Ren A.; Goud, N. Rajesh; Damron, Joshua T.; Matzger, Adam J. (2018). "Room‐Temperature Ferroelectricity in an Organic Cocrystal." Angewandte Chemie International Edition 57(29): 9044-9047.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/145367
dc.description.abstractFerroelectric materials exhibit switchable remanent polarization due to reversible symmetry breaking under an applied electric field. Previous research has leveraged temperature‐induced neutral‐ionic transitions in charge‐transfer (CT) cocrystals to access ferroelectrics that operate through displacement of molecules under an applied field. However, displacive ferroelectric behavior is rare in organic CT cocrystals and achieving a Curie temperature (TC) above ambient has been elusive. Here a cocrystal between acenaphthene and 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane is presented that shows switchable remanent polarization at room temperature (TC=68 °C). Raman spectroscopy, X‐ray diffraction, and solid‐state NMR spectroscopy indicate the ferroelectric behavior is facilitated by acenaphthene (AN) rotation, deviating from conventional design strategies for CT ferroelectrics. These findings highlight the relevance of non‐CT interactions in the design of displacive ferroelectric cocrystals.Switchable remanent polarization at room temperature is displayed by the organic charge‐transfer cocrystal AN‐F4TCNQ. The ferroelectric Curie temperature was measured at 68 °C by differential scanning calorimetry, prompting further electronic and structural characterization of AN‐F4TCNQ which revealed that dynamic motion of acenaphthene (AN) contributes to the high‐temperature polarization switching.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpolarization
dc.subject.othercharge transfer
dc.subject.othercrystal engineering
dc.subject.otherferroelectrics
dc.subject.otherorganic electronics
dc.titleRoom‐Temperature Ferroelectricity in an Organic Cocrystal
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145367/1/anie201805071.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145367/2/anie201805071-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145367/3/anie201805071_am.pdf
dc.identifier.doi10.1002/anie.201805071
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceN. Hill, J. Phys. Chem. B 2000, 104, 6694 – 6709.
dc.identifier.citedreferenceJ. B. Torrance, A. Girlando, J. J. Mayerle, J. I. Crowley, V. Y. Lee, P. Batail, Phys. Rev. Lett. 1981, 47, 1747 – 1750;
dc.identifier.citedreferenceS. Horiuchi, Y. Okimoto, R. Kuami, Y. Tokura, J. Am. Chem. Soc. 2001, 123, 665 – 670;
dc.identifier.citedreferenceS. Horiuchi, R. Kumai, Y. Okimoto, Y. Tokura, Chem. Phys. 2006, 325, 78 – 91;
dc.identifier.citedreferenceC. K. Prout, J. D. Wright, Angew. Chem. Int. Ed. Engl. 1968, 7, 659 – 667; Angew. Chem. 1968, 80, 688 – 697.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Horiuchi, K. Kobayashi, R. Kuami, N. Minami, F. Kagawa, Y. Tokura, Nat. Commun. 2015, 6, 1 – 7;
dc.identifier.citedreferenceJ. Hubbard, J. B. Torrance, Phys. Rev. Lett. 1981, 47, 1750 – 1754;
dc.identifier.citedreferenceF. Kagawa, S. Horiuchi, M. Tokunaga, J. Fujioka, Y. Tokura, Nat. Phys. 2010, 6, 169 – 172.
dc.identifier.citedreferenceR. Taylor, O. Kennard, J. Am. Chem. Soc. 1982, 104, 5063 – 5070.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Salmerón-Valverde, J. G. Robles-Martínez, J. García-Serrano, R. Gómez, R. M. Ridaura, M. Quintana, A. Zehe, Mol. Eng. 1999, 8, 419 – 426;
dc.identifier.citedreferenceN. Castagnetti, G. Kociok-Köhn, E. Da Como, A. Girlando, Phys. Rev. B 2017, 95, 1 – 7;
dc.identifier.citedreferenceM. Masino, A. Girlando, A. Brillante, Phys. Rev. B 2007, 76, 1 – 7;
dc.identifier.citedreferenceA. Dengl, R. Beyer, T. Peterseim, T. Ivek, G. Untereiner, M. Dressel, J. Chem. Phys. 2014, 240, 1 – 6.
dc.identifier.citedreferenceJ. B. Torrance, J. E. Vazquez, J. J. Mayerle, V. Y. Lee, Phys. Rev. Lett. 1981, 46, 253 – 257;
dc.identifier.citedreferenceS. Horiuchi, R. Kumai, Y. Okimoto, Y. Tokura, Synth. Met. 2003, 133–134, 615 – 618.
dc.identifier.citedreferenceP. Batail, S. J. LaPlaca, J. J. Mayerle, J. B. Torrance, J. Am. Chem. Soc. 1981, 103, 951 – 953.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Akutagawa, H. Koshinaka, D. Sato, S. Takeda, S.-I. Noro, H. Takakashi, R. Kumai, Y. Tokura, T. Nakamura, Nat. Mater. 2009, 8, 342 – 347;
dc.identifier.citedreferenceJ. Harada, T. Shimojo, H. Oyamaguchi, H. Hasegawa, Y. Takahashi, K. Satomi, Y. Sazuki, J. Kawamata, T. Inabe, Nat. Chem. 2016, 8, 946 – 952;
dc.identifier.citedreferenceJ.-I. Ichikawa, N. Hoshino, T. Takeda, T. Akutagawa, J. Am. Chem. Soc. 2015, 137, 13155 – 13160.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ.-Y. Le Questel, M. Berthelot, C. Laurence, J. Phys. Org. Chem. 2000, 13, 347 – 358;
dc.identifier.citedreferenceM. Domagała, S. J. Grabowski, J. Phys. Chem. A 2005, 109, 5683 – 5688.
dc.identifier.citedreferenceCCDC  1840748–1840751 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
dc.identifier.citedreference 
dc.identifier.citedreferenceZ. G. Soos, Annu. Rev. Phys. Chem. 1974, 25, 121 – 153;
dc.identifier.citedreferenceI. Shokaryev, A. J. C. Buurma, O. D. Jurchescu, M. A. Uijttewaal, G. A. de Wijs, T. T. M. Palstra, R. A. de Groot, J. Phys. Chem. A 2008, 112, 2497 – 2502;
dc.identifier.citedreferenceK. P. Goetz, D. Vermeulen, M. E. Payne, C. Kloc, L. E. McNeil, O. D. Jurchescu, J. Mater. Chem. C 2014, 2, 3065 – 3076;
dc.identifier.citedreferenceN. R. Goud, A. J. Matzger, Cryst. Growth Des. 2017, 17, 328 – 336;
dc.identifier.citedreferenceS. Horiuchi, Y. Okimoto, R. Kumai, Y. Tokura, Science 2003, 299, 229 – 232.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. S. Tayi, A. Kaeser, M. Matsumo, T. Aida, S. I. Stupp, Nat. Chem. 2015, 7, 281 – 292;
dc.identifier.citedreferenceS. Horiuchi, F. Ishii, R. Kumai, Y. Okimoto, H. Tachibana, N. Nagaosa, Y. Tokura, Nat. Mater. 2005, 4, 163 – 166;
dc.identifier.citedreferenceS. Chen, C. Z. Xiao, J. Am. Chem. Soc. 2014, 136, 6428 – 6436.
dc.identifier.citedreferenceS. Horiuchi, Y. Tokura, Nature 2008, 7, 357 – 366.
dc.identifier.citedreferenceA. S. Tayi, A. K. Shveyd, A. C.-H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao, T. J. Kennedy, A. A. Sarjeant, C. L. Stern, W. F. Paxton, W. Wu, S. K. Dey, A. C. Fahrenbach, J. R. Guest, H. Mohseni, L. X. Chen, K. L. Wang, J. F. Stoddart, S. I. Stupp, Nature 2012, 488, 485 – 489.
dc.identifier.citedreference 
dc.identifier.citedreferenceH. M. McConnell, B. M. Hoffman, R. M. Metzger, Proc. Natl. Acad. Sci. USA 1965, 53, 46 – 50;
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.