Show simple item record

Nondestructive, indirect assessment of the biomechanical properties of the rat intervertebral disc using contrast‐enhanced μCT

dc.contributor.authorNewton, Michael D.
dc.contributor.authorHartner, Samantha E.
dc.contributor.authorGawronski, Karissa
dc.contributor.authorDavenport, Erik J.
dc.contributor.authorTimmons, Shannon C.
dc.contributor.authorBaker, Kevin C.
dc.contributor.authorMaerz, Tristan
dc.date.accessioned2018-08-13T18:52:46Z
dc.date.available2019-09-04T20:15:38Zen
dc.date.issued2018-07
dc.identifier.citationNewton, Michael D.; Hartner, Samantha E.; Gawronski, Karissa; Davenport, Erik J.; Timmons, Shannon C.; Baker, Kevin C.; Maerz, Tristan (2018). "Nondestructive, indirect assessment of the biomechanical properties of the rat intervertebral disc using contrast‐enhanced μCT." Journal of Orthopaedic Research® 36(7): 2030-2038.
dc.identifier.issn0736-0266
dc.identifier.issn1554-527X
dc.identifier.urihttps://hdl.handle.net/2027.42/145375
dc.description.abstractMechanical characterization of the intervertebral disc involves labor‐intensive and destructive experimental methodology. Contrast‐enhanced micro‐computed tomography is a nondestructive imaging modality for high‐resolution visualization and glycosaminoglycan quantification of cartilaginous tissues. The purpose of this study was to determine whether anionic and cationic contrast‐enhanced micro‐computed tomography of the intervertebral disc can be used to indirectly assess disc mechanical properties in an ex vivo model of disc degeneration. L3/L4 motion segments were dissected from female Lewis rats. To deplete glycosaminoglycan, samples were treated with 0 U/ml (Control) or 5 U/ml papain. Contrast‐enhanced micro‐computed tomography was performed following incubation in 40% Hexabrix (anionic) or 30 mg I/ml CA4+ (cationic) for 24 h (n = 10/contrast agent/digestion group). Motion segments underwent cyclic mechanical testing to determine compressive and tensile modulus, stiffness, and hysteresis. Glycosaminoglycan content was determined using the dimethylmethylene blue assay. Correlations between glycosaminoglycan content, contrast‐enhanced micro‐computed tomography attenuation, and mechanical properties were assessed via the Pearson correlation. The predictive accuracy of attenuation on compressive properties was assessed via repeated random sub‐sampling cross validation. Papain digestion produced significant decreases in glycosaminoglycan content and corresponding differences in attenuation and mechanical properties. Attenuation correlated significantly to glycosaminoglycan content and to all compressive mechanical properties using both Hexabrix and CA4+. Predictive linear regression models demonstrated a predictive accuracy of attenuation on compressive modulus and stiffness of 79.8–86.0%. Contrast‐enhanced micro‐computed tomography was highly predictive of compressive mechanical properties in an ex vivo simulation of disc degeneration and may represent an effective modality for indirectly assessing disc compressive properties. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2030–2038, 2018.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherintervertebral disc
dc.subject.otherdisc biomechanics
dc.subject.otherdegenerative disc disease
dc.subject.othercontrast‐enhanced micro‐computed tomography
dc.titleNondestructive, indirect assessment of the biomechanical properties of the rat intervertebral disc using contrast‐enhanced μCT
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelKinesiology and Sports
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145375/1/jor23850_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145375/2/jor23850.pdf
dc.identifier.doi10.1002/jor.23850
dc.identifier.sourceJournal of Orthopaedic Research®
dc.identifier.citedreferencePanagiotacopulos ND, Pope MH, Bloch R, et al. 1987. Water content in human intervertebral discs: part II. viscoelastic behavior. Spine 12: 918 – 924.
dc.identifier.citedreferenceXie L, Lin AS, Levenston ME, et al. 2009. Quantitative assessment of articular cartilage morphology via EPIC‐microCT. Osteoarthritis Cartilage 17: 313 – 320.
dc.identifier.citedreferenceNewton MD, Hartner SE, Timmons S, et al. 2016. Contrast‐enhanced µCT of the intervertebral disc: a comparison of anionic and cationic contrast agents for biochemical and morphological characterization. J Orthop Res 49: 4159 – 4163.
dc.identifier.citedreferenceLakin BA, Ellis DJ, Shelofsky JS, et al. 2015. Contrast‐enhanced CT facilitates rapid, non‐destructive assessment of cartilage and bone properties of the human metacarpal. Osteoarthritis Cartilage 23: 2158 – 2166.
dc.identifier.citedreferenceLakin BA, Grasso DJ, Shah SS, et al. 2013. Cationic agent contrast‐enhanced computed tomography imaging of cartilage correlates with the compressive modulus and coefficient of friction. Osteoarthritis Cartilage 21: 60 – 68.
dc.identifier.citedreferenceLakin BA, Patel H, Holland C, et al. 2015. Contrast‐enhanced CT using a cationic contrast agent enables non‐destructive assessment of the biochemical and biomechanical properties of mouse tibial plateau cartilage. J Orthop Res 34: 1130 – 1138.
dc.identifier.citedreferenceJoshi NS, Bansal PN, Stewart RC, et al. 2009. Effect of contrast agent charge on visualization of articular cartilage using computed tomography: exploiting electrostatic interactions for improved sensitivity. JACS 131: 13234 – 13235.
dc.identifier.citedreferenceChan SC, Burki A, Bonel HM, et al. 2013. Papain‐induced in vitro disc degeneration model for the study of injectable nucleus pulposus therapy. Spine J 13: 273 – 283.
dc.identifier.citedreferenceRoberts S, Menage J, Sivan S, et al. 2008. Bovine explant model of degeneration of the intervertebral disc. BMC Musculoskelet Disord 9: 24.
dc.identifier.citedreferenceBoxberger JI, Auerbach JD, Sen S, et al. 2008. An in vivo model of reduced nucleus pulposus glycosaminoglycan content in the rat lumbar intervertebral disc. Spine 33: 146.
dc.identifier.citedreferenceCannella M, Arthur A, Allen S, et al. 2008. The role of the nucleus pulposus in neutral zone human lumbar intervertebral disc mechanics. J Biomech 41: 2104 – 2111.
dc.identifier.citedreferenceHutton W, Gharpuray V. 1998. The effect of fluid loss on the viscoelastic behavior of the lumbar intervertebral disc in compression. J Biomed Eng 120: 48 – 54.
dc.identifier.citedreferenceHan WM, Nerurkar NL, Smith LJ, et al. 2012. Multi‐scale structural and tensile mechanical response of annulus fibrosus to osmotic loading. Ann Biomed Eng 40: 1610 – 1621.
dc.identifier.citedreferenceEbara S, Iatridis JC, Setton LA, et al. 1996. Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine 21: 452 – 461.
dc.identifier.citedreferenceSkaggs D, Weidenbaum M, Ratcliffe A, et al. 1994. Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine 19: 1310 – 1319.
dc.identifier.citedreferenceGuerin HAL, Elliott DM. 2006. Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load. J Biomech 39: 1410 – 1418.
dc.identifier.citedreferenceBansal PN, Stewart RC, Entezari V, et al. 2011. Contrast agent electrostatic attraction rather than repulsion to glycosaminoglycans affords a greater contrast uptake ratio and improved quantitative CT imaging in cartilage. Osteoarthritis Cartilage 19: 970 – 976.
dc.identifier.citedreferenceEllingson AM, Mehta H, Polly DW, Jr et al. 2013. Disc degeneration assessed by quantitative T2*(T2 star) correlated with functional lumbar mechanics. Spine 38: E1533 – E1540.
dc.identifier.citedreferenceBansal PN, Joshi NS, Entezari V, et al. 2011. Cationic contrast agents improve quantification of glycosaminoglycan (GAG) content by contrast enhanced CT imaging of cartilage. J Orthop Res 29: 704 – 709.
dc.identifier.citedreferenceLin KH, Tang SY. 2017. The quantitative structural and compositional analyses of degenerating intervertebral discs using magnetic resonance imaging and contrast‐enhanced micro‐Computed tomography. Ann Biomed Eng 45: 2626 – 2634.
dc.identifier.citedreferenceEntezari V, Bansal PN, Stewart RC, et al. 2014. Effect of mechanical convection on the partitioning of an anionic iodinated contrast agent in intact patellar cartilage. J Orthop Res 32: 1333 – 1340.
dc.identifier.citedreferenceBenneker LM, Heini PF, Alini M, et al. 2005. 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 30: 167 – 173.
dc.identifier.citedreferenceChin JR, Liebenberg E, Colliou OK, et al. 2007. Biological and mechanical consequences of transient intervertebral disc bending. Eur Spine J 16: 1899 – 1906.
dc.identifier.citedreferenceCourt C, Colliou OK, Chin JR, et al. 2001. The effect of static in vivo bending on the murine intervertebral disc. Spine J 1: 239 – 245.
dc.identifier.citedreferenceZeckser J, Wolff M, Tucker J, et al. 2016. Multipotent mesenchymal stem cell treatment for discogenic low back pain and disc degeneration. Stem Cells International 2016: 1 – 13.
dc.identifier.citedreferenceAdams MA, Roughley PJ. 2006. What is intervertebral disc degeneration, and what causes it ? Spine 31: 2151 – 2161.
dc.identifier.citedreferenceUrban JP, Roberts S. 2003. Degeneration of the intervertebral disc. Arthritis Res Ther 5: 120.
dc.identifier.citedreferenceBoxberger JI, Sen S, Yerramalli CS, et al. 2006. Nucleus pulposus glycosaminoglycan content is correlated with axial mechanics in rat lumbar motion segments. J Orthop Res 24: 1906 – 1915.
dc.identifier.citedreferenceInoue N, Orías AAE. 2011. Biomechanics of intervertebral disk degeneration. Orthop Clin North Am 42: 487 – 499.
dc.identifier.citedreferenceBeckstein JC, Sen S, Schaer TP, et al. 2008. Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Spine 33: E166 – E173.
dc.identifier.citedreferenceRaj PP. 2008. Intervertebral disc: anatomy‐physiology‐pathophysiology‐treatment. Pain Pract 8: 18 – 44.
dc.identifier.citedreferenceHukins D. 1992. A simple model for the function of proteoglycans and collagen in the response to compression of the intervertebral disc. Proc R Soc Lond B Biol Sci 249: 281 – 285.
dc.identifier.citedreferenceJohannessen W, Elliott DM. 2005. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine 30: E724 – E729.
dc.identifier.citedreferenceMichalek AJ, Funabashi KL, Iatridis JC. 2010. Needle puncture injury of the rat intervertebral disc affects torsional and compressive biomechanics differently. Eur Spine J 19: 2110 – 2116.
dc.identifier.citedreferenceLotz JC. 2004. Animal models of intervertebral disc degeneration: lessons learned. Spine 29: 2742 – 2750.
dc.identifier.citedreferenceElliott DM, Sarver JJ. 2004. Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc. Spine 29: 713 – 722.
dc.identifier.citedreferencePalmer AW, Guldberg RE, Levenston ME. 2006. Analysis of cartilage matrix fixed charge density and three‐dimensional morphology via contrast‐enhanced microcomputed tomography. Proc Natl Acad Sci USA 103: 19255 – 19260.
dc.identifier.citedreferenceMaerz T, Newton M, Kristof K, et al. 2014. Three‐dimensional characterization of in vivo intervertebral disc degeneration using EPIC‐µCT. Osteoarthritis Cartilage 22: 1918 – 1925.
dc.identifier.citedreferenceXie L, Lin AS, Guldberg RE, et al. 2010. Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC‐microCT. Osteoarthritis Cartilage 18: 65 – 72.
dc.identifier.citedreferenceXie L, Lin AS, Kundu K, et al. 2012. Quantitative imaging of cartilage and bone morphology, reactive oxygen species, and vascularization in a rodent model of osteoarthritis. Arthritis Rheum 64: 1899 – 1908.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.