Show simple item record

Reconstruction of a meteotsunami in Lake Erie on 27 May 2012: Roles of atmospheric conditions on hydrodynamic response in enclosed basins

dc.contributor.authorAnderson, Eric J.
dc.contributor.authorBechle, Adam J.
dc.contributor.authorWu, Chin H.
dc.contributor.authorSchwab, David J.
dc.contributor.authorMann, Greg E.
dc.contributor.authorLombardy, Kirk A.
dc.date.accessioned2018-08-13T18:53:01Z
dc.date.available2018-08-13T18:53:01Z
dc.date.issued2015-12
dc.identifier.citationAnderson, Eric J.; Bechle, Adam J.; Wu, Chin H.; Schwab, David J.; Mann, Greg E.; Lombardy, Kirk A. (2015). "Reconstruction of a meteotsunami in Lake Erie on 27 May 2012: Roles of atmospheric conditions on hydrodynamic response in enclosed basins." Journal of Geophysical Research: Oceans 120(12): 8020-8038.
dc.identifier.issn2169-9275
dc.identifier.issn2169-9291
dc.identifier.urihttps://hdl.handle.net/2027.42/145384
dc.description.abstractOn 27 May 2012, atmospheric conditions gave rise to two convective systems that generated a series of waves in the meteotsunami band on Lake Erie. The resulting waves swept three swimmers a 0.5 mi offshore, inundated a marina, and may have led to a capsized boat along the southern shoreline. Analysis of radial velocities from a nearby radar tower in combination with coastal meteorological observation indicates that the convective systems produced a series of outflow bands that were the likely atmospheric cause of the meteotsunami. In order to explain the processes that led to meteotsunami generation, we model the hydrodynamic response to three meteorological forcing scenarios: (i) the reconstructed atmospheric disturbance from radar analysis, (ii) simulated conditions from a high‐resolution weather model, and (iii) interpolated meteorological conditions from the NOAA Great Lakes Coastal Forecasting System. The results reveal that the convective systems generated a series of waves incident to the southern shore of the lake that reflected toward the northern shoreline and reflected again to the southern shore, resulting in spatial wave focusing and edge wave formation that combined to impact recreational users near Cleveland, OH. This study illustrates the effects of meteotsunami development in an enclosed basin, including wave reflection, focusing, and edge wave formation as well as temporal lags between the causative atmospheric conditions and arrival of dangerous wave conditions. As a result, the ability to detect these extreme storms and predict the hydrodynamic response is crucial to reducing risk and building resilient coastal communities.Key Points:Radar‐based velocity allows for detection of meteotsunami‐inducing frontWave reflection, focusing, and edge waves led to meteotsunami conditionsEnclosed basins can induce temporal lags between storm front and wave response
dc.publisherWorld Sci
dc.publisherWiley Periodicals, Inc.
dc.subject.othermeteotsunami
dc.subject.otherGreat Lakes
dc.subject.otheredge waves
dc.subject.otherenclosed basin
dc.subject.otherseiche
dc.subject.otherLake Erie
dc.titleReconstruction of a meteotsunami in Lake Erie on 27 May 2012: Roles of atmospheric conditions on hydrodynamic response in enclosed basins
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145384/1/jgrc21485_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145384/2/jgrc21485-sup-0001-2015JC010883-s01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145384/3/jgrc21485.pdf
dc.identifier.doi10.1002/2015JC010883
dc.identifier.sourceJournal of Geophysical Research: Oceans
dc.identifier.citedreferenceSchwab, D. J., G. A. Leshkevich, and G. C. Muhr ( 1992 ), Satellite measurements of surface water temperature in the Great Lakes: Great Lakes coastwatch, J. Great Lakes Res., 18 ( 2 ), 247 – 258, doi: 10.1016/S0380-1330(92)71292-1.
dc.identifier.citedreferencePattiaratchi, C., and E. M. S. Wijeratne ( 2014 ), Observations of meteorological tsunamis along the south‐west Australian coast, Nat. Hazards, 74, 281 – 302, doi: 10.1007/s11069-014-1263-8.
dc.identifier.citedreferencePellikka, H., J. Rauhala, K. K. Kahma, T. Stipa, H. Boman, and A. Kangas ( 2014 ), Recent observations of meteotsunamis on the Finnish coast, Nat. Hazards, 74 ( 1 ), 197 – 215, doi: 10.1007/s11069-014-1150-3.
dc.identifier.citedreferencePlatzman, G. W. ( 1965 ), The prediction of surges in the southern basin of Lake Michigan: Part I. The dynamical basis for prediction, Mon. Weather Rev., 93 ( 5 ), 275 – 281.
dc.identifier.citedreferencePleim, J. E. ( 2007 ), A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and test, J. Appl. Meteorol. Climatol., 46, 11,383 – 11,395.
dc.identifier.citedreferenceProudman, J. ( 1929 ), The effects on the sea of changes in atmospheric pressure, Mon. Not. R. Astron. Soc. Geophys. Suppl., 2 ( 4 ), 197 – 209, doi: 10.1111/j.1365-246X.1929.tb05408.x.
dc.identifier.citedreferenceRabinovich, A. B. ( 2009 ), Seiches and harbor oscillations, in Handbook of Coastal and Ocean Engineering, edited by Y. C. Kim, pp. 193 – 236, World Sci., Singapore.
dc.identifier.citedreferenceRenault, L., G. Vizoso, A. Jansá, J. Wilkin, and J. Tintoré ( 2011 ), Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models, Geophys. Res. Lett., 38, L10601, doi: 10.1029/2011GL047361.
dc.identifier.citedreferenceRoberts, R. D., and J. W. Wilson ( 1989 ), A proposed microburst nowcasting procedure using single‐Doppler radar, J. Appl. Meteorol., 28, 285 – 303, doi: 10.1175/1520-0450(1989)028<0285:APMNPU>2.0.CO;2.
dc.identifier.citedreferenceSchwab, D. J., and K. W. Bedford ( 1994 ), Initial implementation of the Great Lakes Coastal Forecasting System: A real‐time system for predicting lake circulation and thermal structure, Water Qual. Res. J., 29 ( 2–3 ), 203 – 220.
dc.identifier.citedreferenceSchwab, D. J., G. A. Leshkevich, and G. C. Muhr ( 1999 ), Automated mapping of surface water temperature in the Great Lakes, J. Great Lakes Res., 25 ( 3 ), 468 – 481, doi: 10.1016/S0380-1330(99)70755-0.
dc.identifier.citedreferenceŠepić, J., and A. B. Rabinovich ( 2014 ), Meteotsunami in the Great Lakes, Chesapeake Bay and on the Atlantic coast of the United States generated by the propagating “derecho” of 29–30 June 2012, Nat. Hazards, 74, 75 – 107, doi: 10.1007/s11069-014-1310-5.
dc.identifier.citedreferenceŠepić, J., L. Denis, and I. Vilibić ( 2009 ), Real‐time procedure for detection of a meteotsunami within an early tsunami warning system, Phys. Chem. Earth, 34, 1023 – 1031, doi: 10.1016/j.pce.2009.08.006.
dc.identifier.citedreferenceŠepić, J. and I. Vilibić ( 2011 ), The development and implementation of a real‐time meteotsunami warning network for the Adriatic Sea, Natural Hazards and Earth System Sciences, 11 ( 1 ), 83 – 91.
dc.identifier.citedreferenceŠepić, J., I. Vilibić, and I. Fine ( 2015 ), Northern Adriatic meteorological tsunamis: Assessment of their potential through ocean modeling experiments, J. Geophys. Res. Oceans, 120, 2993 – 3010, doi: 10.1002/2015JC010795.
dc.identifier.citedreferenceSkamarock, W. C., et al. ( 2008 ), A description of the advanced research WRF Version 3, NCAR Tech. Note NCAR/TN‐475+STR, doi: 10.5065/d68s4mvh, NCAR, Boulder, Colo.
dc.identifier.citedreferenceStumpf, G. J., A. Witt, E. DeWayne Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess ( 1998 ), The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR‐88D, Weather Forecasting, 13, 304 – 326, doi: 10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.
dc.identifier.citedreferenceTao, W. K., J. Simpson, and M. McCumber ( 1989 ), An ice‐water saturation adjustment, Mon. Weather Rev., 117, 231 – 235.
dc.identifier.citedreferenceThiébaux, J., E. Rogers, W. Wang, and B. Katz ( 2003 ), A new high‐resolution blended real‐time global sea surface temperature analysis, Bull. Am. Meteorol. Soc., 84, 645 – 656.
dc.identifier.citedreferenceThomson, R. E., A. B. Rabinovich, I. V. Fine, D. C. Sinnott, A. McCarthy, N. A. S. Sutherland, and L. K. Neil ( 2009 ), Meteorological tsunamis on the coasts of British Columbia and Washington, Phys. Chem. Earth, 34, 971 – 988, doi: 10.1016/j.pce.2009.10.003.
dc.identifier.citedreferenceToledo Blade ( 1942 ), Freak Tidal Wave Sweeps Lake Erie Shoreline, Eight Believed Drowned.
dc.identifier.citedreferenceUrsell, F. ( 1952 ), Edge waves on a sloping beach, Proc. R. Soc. London, Ser. A, 214 ( 1116 ), 79 – 98.
dc.identifier.citedreferenceVilibić, I. ( 2005 ), Numerical study of the Middle Adriatic coastal waters’ sensitivity to the various air pressure travelling disturbances, Ann. Geophys., 23 ( 12 ), 3569 – 3578, doi: 10.5194/angeo-23-3569-2005.
dc.identifier.citedreferenceVilibić, I. ( 2008 ), Numerical simulations of the Proudman resonance, Cont. Shelf Res., 28 ( 4–5 ), 574 – 581, doi: 10.1016/j.csr.2007.11.005.
dc.identifier.citedreferenceVilibić, I., S. Monserrat, A. Rabinovich, and H. Mihanović ( 2008 ), Numerical modelling of the destructive meteotsunami of 15 June, 2006 on the coast of the Balearic Islands, Pure Appl. Geophys., 165 ( 11–12 ), 2169 – 2195, doi: 10.1007/s00024-008-0426-5.
dc.identifier.citedreferenceVilibić, I., K. Horvath, N. Strelec Mahović, S. Monserrat, M. Marcos, Á. Amores, and I. Fine ( 2014 ), Atmospheric processes responsible for generation of the 2008 Boothbay meteotsunami, Nat. Hazards, 74, 25 – 53, doi: 10.1007/s11069-013-0811-y.
dc.identifier.citedreferenceWertman, C. A., R. M. Yablonsky, Y. Shen, J. Merrill, C. R. Kincaid, and R. A. Pockalny ( 2013 ), Mesoscale convective system surface pressure anomalies responsible for meteotsunamis along the U.S. East Coast on June 13th, 2013, Sci. Rep., 4, 7143, doi: 10.1038/srep07143.
dc.identifier.citedreferenceAnderson, E. J., and D. J. Schwab ( 2011 ), Relationships between wind‐driven and hydraulic flow in Lake St. Clair and the St. Clair River Delta, J. Great Lakes Res., 37 ( 1 ), 147 – 158.
dc.identifier.citedreferenceAnderson, E. J., and D. J. Schwab ( 2013 ), Predicting the oscillating bi‐directional exchange flow in the Straits of Mackinac, J. Great Lakes Res., 39 ( 4 ), 663 – 671.
dc.identifier.citedreferenceAnderson, E. J., D. J. Schwab, and G. A. Lang ( 2010 ), Real‐time hydraulic and hydrodynamic model of the St. Clair River, Lake St. Clair, Detroit River System, J. Hydraul. Eng., 136 ( 8 ), 507 – 518.
dc.identifier.citedreferenceAndre, G., M. Marcos, and C. Daubord ( 2013 ), Detection method of meteotsunami events and characterization of harbor oscillations in Western Mediterranean, Coastal Dynamics 2013 conference proceedings, 24–28 June 2013, pp. 83 – 92.
dc.identifier.citedreferenceAsano, T., T. Yamashiro, and N. Nishimura ( 2012 ), Field observations of meteotsunami locally called “abiki” in Urauchi Bay, Kami‐Koshiki Island, Japan, Nat. Hazards, 64 ( 2 ), 1685 – 1706.
dc.identifier.citedreferenceAshley, W. S., T. L. Mote, and M. L. Bentley ( 2005 ), On the episodic nature of derecho‐producing convective systems in the United States, Int. J. Climatol., 25 ( 14 ), 1915 – 1932, doi: 10.1002/joc.1229.
dc.identifier.citedreferenceAs‐Salek, J., and D. Schwab ( 2004 ), High‐frequency water level fluctuations in Lake Michigan, J. Waterw. Port Coastal Ocean Eng., 130 ( 1 ), 45 – 53, doi: 10.1061/(ASCE)0733-950X(2004)130:1(45).
dc.identifier.citedreferenceBai, X., J. Wang, D. J. Schwab, Y. Yang, L. Luo, G. A. Leshkevich, and S. Liu ( 2013 ), Modeling 1993‐2008 climatology of seasonal general circulation and thermal structure in the Great Lakes using FVCOM, Ocean Modell., 65, 40 – 63.
dc.identifier.citedreferenceBechle, A. J., and C. H. Wu ( 2014 ), The Lake Michigan meteotsunamis of 1954 revisited, Nat. Hazards, 74, 155 – 177, doi: 10.1007/s11069-014-1193-5.
dc.identifier.citedreferenceBentley, M. L., and J. A. Sparks ( 2003 ), A 15 yr climatology of derecho‐producing mesoscale convective systems over the central and eastern United States, Clim. Res., 24 ( 2 ), 129 – 139, doi: 10.3354/cr024129.
dc.identifier.citedreferenceCandela, J., S. Mazzola, C. Sammari, R. Limeburner, C. J. Lozano, B. Patti, and A. Bonanno ( 1999 ), The “Mad Sea” phenomenon in Strait of Sicily, J. Phys. Oceanogr., 29 ( 9 ), 2210 – 2231.
dc.identifier.citedreferenceCandella, R. N. ( 2009 ), Meteorologically induced strong seiches observed at Arraial do Cabo, RJ, Brazil, Phys. Chem. Earth, 34 ( 17–18 ), 989 – 997, doi: 10.1016/j.pce.2009.06.007.
dc.identifier.citedreferenceChen, C., H. Liu, and R. C. Beardsley ( 2003 ), An unstructured grid, finite‐volume, three‐dimensional, primitive equations ocean model: Application to coastal ocean and estuaries, J. Atmos. Oceanic Technol., 20 ( 1 ), 159 – 186.
dc.identifier.citedreferenceChen, C., R. C. Beardsley, and G. Cowles ( 2006 ), An unstructured grid, finite‐volume coastal ocean model (FVCOM) system, Oceanography, 19 ( 1 ), 78 – 89.
dc.identifier.citedreferenceChen, C., H. Huang, R. C. Beardsle, H. Liu, Q. Xu, and G. Cowles ( 2007 ), A finite‐volume numerical approach for coastal ocean circulation studies: Comparisons with finite difference models, J. Geophys. Res., 112, C03018, doi: 10.1029/2006JC003485.
dc.identifier.citedreferenceChen, C., Z. Lai, R. C. Beardsley, J. Sasaki, J. Lin, H. Lin, R. Ji, and Y. Sun ( 2014 ), The March 11, 2011 Tohoku M9.0 earthquake‐induced tsunami and coastal inundation along the Japanese coast: A model assessment, Prog. Oceanogr., 123, 84 – 104, doi: 10.1016/j.pocean.2014.01.002.
dc.identifier.citedreferenceChurchill, D. D., S. H. Houston, and N. A. Bond ( 1995 ), The Daytona Beach wave of 3‐4 July 1992—A shallow‐water gravity‐wave forced by a propagating squall line, Bull. Am. Meteorol. Soc., 76 ( 1 ), 21 – 32, doi: 10.1175/1520-0477(1995)076<0021:TDBWOJ>2.0.CO;2.
dc.identifier.citedreferenceCleveland Plain Dealer ( 1882 ), A Tidal Wave Sweeps the Lake Front, Doing Considerable Damage–Docks Four Feet Under Water–Hundreds of Fish Washed Ashore.
dc.identifier.citedreferenceCrum, T. D., and R. L. Alberty ( 1993 ), The WSR‐88D and the WSR‐88D operational support facility, Bull. Am. Meteorol. Soc., 74 ( 9 ), 1669 – 1687.
dc.identifier.citedreferenceDonn, W. L., and N. K. Balachandran ( 1969 ), Coupling between a moving air‐pressure disturbance and the sea surface, Tellus, 21 ( 5 ), 701 – 706, doi: 10.1111/j.2153-3490.1969.tb00478.x.
dc.identifier.citedreferenceDragani, W. C., E. E. D’Onofrio, W. Grismeyer, M. M. E. Fiore, and M. I. Campos ( 2009 ), Atmospherically‐induced water oscillations detected in the port of Quequén, Buenos Aires, Argentina, Phys. Chem. Earth, 34, 998 – 1008.
dc.identifier.citedreferenceEwing, M., F. Press, and W. L. Donn ( 1954 ), An explanation of the Lake Michigan wave of 26 June 1954, Science, 120 ( 3122 ), 684 – 686, doi: 10.1126/science.120.3122.684.
dc.identifier.citedreferenceFujisaki, A., J. Wang, X. Bai, G. Leshkevich, and B. Lofgren ( 2013 ), Model‐simulated interannual variability of Lake Erie ice cover, circulation, and thermal structure in response to atmospheric forcing 2003‐2012, J. Geophys. Res. Oceans, 118, 4286 – 4304, doi: 10.1002/jgrc.20312.
dc.identifier.citedreferenceGemmill, W., B. Katz, and X. Li ( 2007 ), Daily real‐time global sea surface temperature high‐resolution analysis: RTG_SST_HR NOAA/NCEP, NOAA/NWS/NCEP/MMAB Off. Note 260, 39 pp., NOAA, College Park, Md.
dc.identifier.citedreferenceHuang, H., C. Chen, G. W. Cowles, C. D. Winant, R. C. Beardsley, K. S. Hedstrom, and D. B. Haidvogel ( 2008 ), FVCOM validation experiments: Comparisons with ROMS for three idealized barotropic test problems, J. Geophys. Res., 113, C07042, doi: 10.1029/2007JC004557.
dc.identifier.citedreferenceHuuskonen, A., E. Saltikoff, and I. Holleman ( 2014 ), The operational weather radar network in Europe, Bull. Am. Meteorol. Soc., 95, 897 – 907.
dc.identifier.citedreferenceJansa, A., S. Monserrat, and D. Gomis ( 2007 ), The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami, Adv. Geosci., 12, 1 – 4.
dc.identifier.citedreferenceKlazura, G. E., and A. A. Imy ( 1993 ), A description of the initial set of analysis products available from the NEXRAD WSR‐88D system, Bull. Am. Meteorol. Soc., 74 ( 7 ), 1293 – 1311.
dc.identifier.citedreferenceKlingle, D. L., D. R. Smith, and M. M. Wolfson ( 1987 ), Gust front characteristics as detected by Doppler radar, Mon. Weather Rev., 115, 905 – 918, doi: 10.1175/1520-0493(1987)115<0905:GFCADB>2.0.CO;2.
dc.identifier.citedreferenceLarge, W. G., and S. Pond ( 1981 ), Open ocean momentum flux measurements in moderate to strong winds, J. Phys. Oceanogr., 11, 324 – 336, doi: 10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.
dc.identifier.citedreferenceLipa, B., H. Parikh, D. Barrick, H. Roarty, and S. Glenn ( 2014 ), High‐frequency radar observations of the June 2013 US East Coast meteotsunami, Nat. Hazards, 74 ( 1 ), 109 – 122, doi: 10.1007/s11069-013-0992-4.
dc.identifier.citedreferenceMaddox, R. A., J. Zhang, J. J. Gourley, and K. W. Howard ( 2002 ), Weather radar coverage of the contiguous United States, Weather Forecasting, 17, 927 – 934.
dc.identifier.citedreferenceMesinger, F., et al. ( 2006 ), North American regional reanalysis, Bull. Am. Meteorol. Soc., 88 ( 3 ), 343 – 360.
dc.identifier.citedreferenceMonserrat, S., I. Vilibić, and A. B. Rabinovich ( 2006 ), Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band, Nat. Hazards Earth Syst. Sci., 6 ( 6 ), 1035 – 1051, doi: 10.5194/nhess-6-1035-2006.
dc.identifier.citedreferenceNew York Times ( 1912 ), Tidal Wave Sweeps Erie.
dc.identifier.citedreferenceNguyen, T. D., P. Thupaki, E. J. Anderson, and M. S. Phanikumar ( 2014 ), Summer circulation and exchange in the Saginaw Bay‐Lake Huron system, J. Geophys. Res. Oceans, 119, 2713 – 2734, doi: 10.1002/2014JC009828.
dc.identifier.citedreferenceNiu, Q., M. Xia, E. S. Rutherford, D. M. Mason, E. J. Anderson, and D. J. Schwab ( 2015 ), Investigation of interbasin exchange and interannual variability in Lake Erie using an unstructured‐grid hydrodynamic model, J. Geophys. Res. Oceans, 120, 2212 – 2232, doi: 10.1002/2014JC010457.
dc.identifier.citedreferenceOrlić, M., D. Belusic, I. Janekovic, and M. Pasaric ( 2010 ), Fresh evidence relating the great Adriatic surge of 21 June 1978 to mesoscale atmospheric forcing, J. Geophys. Res., 115, C06011, doi: 10.1029/2009JC005777.
dc.identifier.citedreferenceOrlić, M. ( 1980 ), About a possible occurrence of the Proudman resonance in the Adriatic, Thalassia Jugoslavica, 16, 79 – 88.
dc.identifier.citedreferencePasquet, S., and I. Vilibić ( 2013 ), Shelf edge reflection of atmospherically generated long ocean waves along the central U.S. East Coast, Cont. Shelf Res., 66, 1 – 8.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.