Show simple item record

A single high‐fat meal alters human soluble RAGE profiles and PBMC RAGE expression with no effect of prior aerobic exercise

dc.contributor.authorFuller, Kelly N.Z.
dc.contributor.authorValentine, Rudy J.
dc.contributor.authorMiranda, Edwin R.
dc.contributor.authorKumar, Prabhakaran
dc.contributor.authorPrabhakar, Bellur S.
dc.contributor.authorHaus, Jacob M.
dc.date.accessioned2018-08-13T18:53:21Z
dc.date.available2019-09-04T20:15:39Zen
dc.date.issued2018-07
dc.identifier.citationFuller, Kelly N.Z.; Valentine, Rudy J.; Miranda, Edwin R.; Kumar, Prabhakaran; Prabhakar, Bellur S.; Haus, Jacob M. (2018). "A single high‐fat meal alters human soluble RAGE profiles and PBMC RAGE expression with no effect of prior aerobic exercise." Physiological Reports (14): n/a-n/a.
dc.identifier.issn2051-817X
dc.identifier.issn2051-817X
dc.identifier.urihttps://hdl.handle.net/2027.42/145399
dc.description.abstractA high‐fat diet can induce inflammation and metabolic diseases such as diabetes and atherosclerosis. The receptor for advanced glycation endproducts (RAGE) plays a critical role in metabolic disease pathophysiology and the soluble form of the receptor (sRAGE) can mitigate these effects. However, little is known about RAGE in the postprandial condition and the effect of exercise in this context. Thus, we aimed to determine the effects of a single high‐fat meal (HFM) with and without prior exercise on peripheral blood mononuclear cell (PBMC) RAGE biology. Healthy males (n = 12) consumed a HFM on two occasions, one without prior exercise and one 16–18 hours following acute aerobic exercise. Total soluble RAGE (sRAGE) and endogenous secretory RAGE (esRAGE) were determined via ELISA and cleaved RAGE (cRAGE) was calculated as the difference between the two. Isolated PBMCs were analyzed for RAGE, ADAM10, TLR4, and MyD88 protein expression and ADAM10 activity. The HFM significantly (P < 0.01) attenuated sRAGE, esRAGE, and cRAGE by 9.7%, 6.9%, and 10.5%, respectively. Whereas, the HFM increased PBMC RAGE protein expression by 10.3% (P < 0.01), there was no meal effect on PBMC TLR4, MYD88, or ADAM10 protein expression, nor ADAM10 activity. There was also no exercise effect on any experimental outcomes. These findings suggest that PBMC RAGE and soluble RAGE may be important in the postprandial response to a HFM, and that prior aerobic exercise does not alter these processes in young healthy adult males. The mechanisms by which a HFM induces RAGE expression and reduces circulating soluble RAGE isoforms requires further study.Receptor for advanced glycation endproducts expression differs among circulating immune cell populations.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherADAM10
dc.subject.otherMyD88
dc.subject.otherpostprandial
dc.subject.otherToll‐like receptor 4
dc.titleA single high‐fat meal alters human soluble RAGE profiles and PBMC RAGE expression with no effect of prior aerobic exercise
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145399/1/phy213811_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145399/2/phy213811.pdf
dc.identifier.doi10.14814/phy2.13811
dc.identifier.sourcePhysiological Reports
dc.identifier.citedreferenceRebrin, K., G. M. Steil, S. D. Mittelman, and R. N. Bergman. 1996. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J Clin Invest 98: 741 – 749.
dc.identifier.citedreferencePanagiotakos, D. B., C. Pitsavos, C. Chrysohoou, S. Kavouras, and C. Stefanadis; Study A. 2005. The associations between leisure‐time physical activity and inflammatory and coagulation markers related to cardiovascular disease: the ATTICA Study. Prev. Med. 40: 432 – 437.
dc.identifier.citedreferencePeake, J. M., K. Suzuki, M. Hordern, G. Wilson, K. Nosaka, and J. S. Coombes. 2005. Plasma cytokine changes in relation to exercise intensity and muscle damage. Eur. J. Appl. Physiol. 95: 514 – 521.
dc.identifier.citedreferencePetitt, D. S., A. Arngrimsson, and K. J. Cureton. 2003. Effect of resistance exercise on postprandial lipemia. J. Appl. Physiol. 94: 694 – 700.
dc.identifier.citedreferenceRaucci, A., S. Cugusi, A. Antonelli, S. M. Barabino, L. Monti, A. Bierhaus, et al. 2008. A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane‐bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J. 22: 3716 – 3727.
dc.identifier.citedreferenceNishimura, S., I. Manabe, and R. Nagai. 2009. Adipose tissue inflammation in obesity and metabolic syndrome. Discov Med 8: 55 – 60.
dc.identifier.citedreferenceRector, R. S., S. O. Warner, Y. Liu, P. S. Hinton, G. Y. Sun, R. H. Cox, et al. 2007. Exercise and diet induced weight loss improves measures of oxidative stress and insulin sensitivity in adults with characteristics of the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 293: E500 – E506.
dc.identifier.citedreferenceSakaguchi, M., H. Murata, K. Yamamoto, T. Ono, Y. Sakaguchi, A. Motoyama, et al. 2011. TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PLoS ONE 6: e23132.
dc.identifier.citedreferenceSchmidt, A. M., S. D. Yan, J. Brett, R. Mora, R. Nowygrod, and D. Stern. 1993. Regulation of human mononuclear phagocyte migration by cell surface‐binding proteins for advanced glycation end products. J Clin Invest 91: 2155 – 2168.
dc.identifier.citedreferenceSchmidt, A. M., S. D. Yan, S. F. Yan, and D. M. Stern. 2001. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108: 949 – 955.
dc.identifier.citedreferenceShi, H., M. V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, and J. S. Flier. 2006. TLR4 links innate immunity and fatty acid‐induced insulin resistance. J Clin Invest 116: 3015 – 3025.
dc.identifier.citedreferenceSong, F., C. Hurtado del Pozo, R. Rosario, Y. S. Zou, R. Ananthakrishnan, X. Xu, et al. 2014. RAGE regulates the metabolic and inflammatory response to high‐fat feeding in mice. Diabetes. 63: 1948 – 1965.
dc.identifier.citedreferenceSourris, K. C., B. E. Harcourt, S. A. Penfold, F. Y. Yap, A. L. Morley, P. E. Morgan, et al. 2010. Modulation of the cellular expression of circulating advanced glycation end‐product receptors in type 2 diabetic nephropathy. Exp Diabetes Res 2010: 974681.
dc.identifier.citedreferenceStarkie, R., S. R. Ostrowski, S. Jauffred, M. Febbraio, and B. K. Pedersen. 2003. Exercise and IL‐6 infusion inhibit endotoxin‐induced TNF‐alpha production in humans. FASEB J 17: 884 – 886.
dc.identifier.citedreferenceStehouwer, C. D., M. A. Gall, J. W. Twisk, E. Knudsen, J. J. Emeis, and H. H. Parving. 2002. Increased urinary albumin excretion, endothelial dysfunction, and chronic low‐grade inflammation in type 2 diabetes: progressive, interrelated, and independently associated with risk of death. Diabetes 51: 1157 – 1165.
dc.identifier.citedreferenceSubramanian, S., P. K. Pallati, P. Sharma, D. K. Agrawal, and K. C. Nandipati. 2017. Significant association of TREM‐1 with HMGB1, TLRs and RAGE in the pathogenesis of insulin resistance in obese diabetic populations. Am. J. Transl. Res. 9: 3224 – 3244.
dc.identifier.citedreferenceTanji, N., G. S. Markowitz, C. Fu, T. Kislinger, A. Taguchi, M. Pischetsrieder, et al. 2000. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J. Am. Soc. Nephrol. 11: 1656 – 1666.
dc.identifier.citedreferenceTsetsonis, N. V., A. E. Hardman, and S. S. Mastana. 1997. Acute effects of exercise on postprandial lipemia: a comparative study in trained and untrained middle‐aged women. Am. J. Clin. Nutr. 65: 525 – 533.
dc.identifier.citedreferenceWan, Z., C. Durrer, D. Mah, S. Simtchouk, E. Robinson, and J. P. Little. 2014. Reduction of AMPK activity and altered MAPKs signalling in peripheral blood mononuclear cells in response to acute glucose ingestion following a short‐term high fat diet in young healthy men. Metabolism 63: 1209 – 1216.
dc.identifier.citedreferenceWautier, M. P., O. Chappey, S. Corda, D. M. Stern, A. M. Schmidt, and J. L. Wautier. 2001. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am. J. Physiol. Endocrinol. Metab. 280: E685 – E694.
dc.identifier.citedreferenceWei, M., L. W. Gibbons, J. B. Kampert, M. Z. Nichaman, and S. N. Blair. 2000. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann. Intern. Med. 132: 605 – 611.
dc.identifier.citedreferenceYonekura, H., Y. Yamamoto, S. Sakurai, R. G. Petrova, M. J. Abedin, H. Li, et al. 2003. Novel splice variants of the receptor for advanced glycation end‐products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes‐induced vascular injury. Biochem J 370: 1097.
dc.identifier.citedreferenceZeng, S., N. Feirt, M. Goldstein, J. Guarrera, N. Ippagunta, U. Ekong, et al. 2004. Blockade of receptor for advanced glycation end product (RAGE) attenuates ischemia and reperfusion injury to the liver in mice. Hepatology 39: 422 – 432.
dc.identifier.citedreferenceZong, H., A. Madden, M. Ward, M. H. Mooney, C. T. Elliott, and A. W. Stitt. 2010. Homodimerization is essential for the receptor for advanced glycation end products (RAGE)‐mediated signal transduction. J. Biol. Chem. 285: 23137 – 23146.
dc.identifier.citedreferenceAkirav, E. M., P. Preston‐Hurlburt, J. Garyu, O. Henegariu, R. Clynes, A. M. Schmidt, et al. 2012. RAGE expression in human T cells: a link between environmental factors and adaptive immune responses. PLoS ONE 7: e34698.
dc.identifier.citedreferenceBakker, E. A., D. C. Lee, X. Sui, E. G. Artero, J. R. Ruiz, T. M. H. Eijsvogels, et al. 2017. Association of resistance exercise, independent of and combined with aerobic exercise, with the incidence of metabolic syndrome. Mayo Clin. Proc. 92: 1214 – 1222.
dc.identifier.citedreferenceBalducci, S., S. Zanuso, A. Nicolucci, F. Fernando, S. Cavallo, P. Cardelli, et al. 2010. Anti‐inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr. Metab. Cardiovasc. Dis. 20: 608 – 617.
dc.identifier.citedreferenceBassuk, S. S., and J. E. Manson. 2005. Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. J Appl Physiol (1985) 99: 1193 – 1204.
dc.identifier.citedreferencevan Beijnum, J. R., W. A. Buurman, and A. W. Griffioen. 2008. Convergence and amplification of toll‐like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11: 91 – 99.
dc.identifier.citedreferenceBickerton, A. S., R. Roberts, B. A. Fielding, L. Hodson, E. E. Blaak, A. J. Wagenmakers, et al. 2007. Preferential uptake of dietary Fatty acids in adipose tissue and muscle in the postprandial period. Diabetes 56: 168 – 176.
dc.identifier.citedreferenceBierhaus, A., P. M. Humpert, M. Morcos, T. Wendt, T. Chavakis, B. Arnold, et al. 2005. Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. (Berl) 83: 876 – 886.
dc.identifier.citedreferenceBlair, S. N., H. W. Kohl III, R. S. Jr Paffenbarger, D. G. Clark, K. H. Cooper, and L. W. Gibbons. 1989. Physical fitness and all‐cause mortality. A prospective study of healthy men and women. JAMA 262: 2395 – 2401.
dc.identifier.citedreferenceBrett, J., A. M. Schmidt, S. D. Yan, Y. S. Zou, E. Weidman, D. Pinsky, et al. 1993. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am. J. Pathol. 143: 1699 – 1712.
dc.identifier.citedreferenceChatzinikolaou, A., I. G. Fatouros, V. Gourgoulis, A. Avloniti, A. Z. Jamurtas, M. G. Nikolaidis, et al. 2010. Time course of changes in performance and inflammatory responses after acute plyometric exercise. J Strength Cond Res 24: 1389 – 1398.
dc.identifier.citedreferenceCheng, H. S., S. H. Ton, J. B. L. Tan, and K. Abdul Kadir. 2017. The ameliorative effects of a tocotrienol‐rich fraction on the AGE‐RAGE axis and hypertension in high‐fat‐diet‐fed rats with metabolic syndrome. Nutrients. 9: E984.
dc.identifier.citedreferenceCipollone, F., A. Iezzi, M. Fazia, M. Zucchelli, B. Pini, C. Cuccurullo, et al. 2003. The receptor RAGE as a progression factor amplifying arachidonate‐dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control. Circulation 108: 1070 – 1077.
dc.identifier.citedreferenceCohen, J. C., T. D. Noakes, and A. J. Benade. 1989. Postprandial lipemia and chylomicron clearance in athletes and in sedentary men. Am. J. Clin. Nutr. 49: 443 – 447.
dc.identifier.citedreferenceCoppack, S. W., M. Persson, R. L. Judd, and J. M. Miles. 1999. Glycerol and nonesterified fatty acid metabolism in human muscle and adipose tissue in vivo. Am. J. Physiol. 276: E233 – E240.
dc.identifier.citedreferenceNielsen, T. B., P. Pantapalangkoor, J. Yan, B. M. Luna, K. Dekitani, K. Bruhn, et al. 2017. Diabetes exacerbates infection via hyperinflammation by signaling through TLR4 and RAGE. MBio. 8: e00818 – e00817.
dc.identifier.citedreferenceDekker, M. J., S. Lee, R. Hudson, K. Kilpatrick, T. E. Graham, R. Ross, et al. 2007. An exercise intervention without weight loss decreases circulating interleukin‐6 in lean and obese men with and without type 2 diabetes mellitus. Metabolism 56: 332 – 338.
dc.identifier.citedreferenceDixon, N. C., T. L. Hurst, D. C. Talbot, R. M. Tyrrell, and D. Thompson. 2009. Active middle‐aged men have lower fasting inflammatory markers but the postprandial inflammatory response is minimal and unaffected by physical activity status. J Appl Physiol (1985) 107: 63 – 68.
dc.identifier.citedreferenceDozio, E., S. Briganti, A. Delnevo, E. Vianello, F. Ermetici, F. Secchi, et al. 2016. Relationship between soluble receptor for advanced glycation end products (sRAGE), body composition and fat distribution in healthy women. Eur. J. Nutr. 56: 2557 – 2564.
dc.identifier.citedreferenceErridge, C., T. Attina, C. M. Spickett, and D. J. Webb. 2007. A high‐fat meal induces low‐grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 86: 1286 – 1292.
dc.identifier.citedreferenceFuller, K. N. Z., C. M. Summers, and R. J. Valentine. 2017. Effect of a single bout of aerobic exercise on high‐fat meal‐induced inflammation. Metabolism 71: 144 – 152.
dc.identifier.citedreferenceGleeson, M., N. C. Bishop, D. J. Stensel, M. R. Lindley, S. S. Mastana, and M. A. Nimmo. 2011. The anti‐inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 11: 607 – 615.
dc.identifier.citedreferenceGrimble, R. F. 2002. Inflammatory status and insulin resistance. Curr. Opin. Clin. Nutr. Metab. Care 5: 551 – 559.
dc.identifier.citedreferenceHu, F. B., M. J. Stampfer, C. Solomon, S. Liu, G. A. Colditz, F. E. Speizer, et al. 2001. Physical activity and risk for cardiovascular events in diabetic women. Ann. Intern. Med. 134: 96 – 105.
dc.identifier.citedreferenceHuang, S., J. M. Rutkowsky, R. G. Snodgrass, K. D. Ono‐Moore, D. A. Schneider, J. W. Newman, et al. 2012. Saturated fatty acids activate TLR‐mediated proinflammatory signaling pathways. J. Lipid Res. 53: 2002 – 2013.
dc.identifier.citedreferenceIspirlidis, I., I. G. Fatouros, A. Z. Jamurtas, M. G. Nikolaidis, I. Michailidis, I. Douroudos, et al. 2008. Time‐course of changes in inflammatory and performance responses following a soccer game. Clin. J. Sport Med. 18: 423 – 431.
dc.identifier.citedreferenceJenkins, N. T., R. Q. Landers, S. J. Prior, N. Soni, E. E. Spangenburg, and J. M. Hagberg. 2011. Effects of acute and chronic endurance exercise on intracellular nitric oxide and superoxide in circulating CD34⁺ and CD34⁻ cells. J. Appl. Physiol. 111: 929 – 937.
dc.identifier.citedreferenceKirstein, M., J. Brett, S. Radoff, S. Ogawa, D. Stern, and H. Vlassara. 1990. Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet‐derived growth factor: role in vascular disease of diabetes and aging. Proc. Natl Acad. Sci. USA 87: 9010 – 9014.
dc.identifier.citedreferenceLeclerc, E., G. Fritz, M. Weibel, C. W. Heizmann, and A. Galichet. 2007. S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J. Biol. Chem. 282: 31317 – 31331.
dc.identifier.citedreferenceLopez‐Moreno, J., G. M. Quintana‐Navarro, J. Delgado‐Lista, A. Garcia‐Rios, J. F. Alcala‐Diaz, F. Gomez‐Delgado, et al. 2016. Mediterranean diet supplemented with coenzyme Q10 modulates the postprandial metabolism of advanced glycation end products in elderly men and women. J. Gerontol. A Biol. Sci. Med. Sci. 73: 340 – 346.
dc.identifier.citedreferenceLopez‐Moreno, J., G. M. Quintana‐Navarro, A. Camargo, R. Jimenez‐Lucena, J. Delgado‐Lista, C. Marin, et al. 2017. Dietary fat quantity and quality modifies advanced glycation end products metabolism in patients with metabolic syndrome. Mol. Nutr. Food Res. 61: 1601029.
dc.identifier.citedreferenceMauro, C., J. Smith, D. Cucchi, D. Coe, H. Fu, F. Bonacina, et al. 2017. Obesity‐induced metabolic stress leads to biased effector memory CD4(+) T Cell differentiation via PI3K p110delta‐Akt‐mediated signals. Cell Metab. 25: 593 – 609.
dc.identifier.citedreferenceMcArdle, M.A., O. M. Finucane, R. M. Connaughton, A. M. McMorrow, and H. M. Roche. 2013. Mechanisms of obesity‐induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endocrinol (Lausanne). 4: 52.
dc.identifier.citedreferenceMerrill, J. R., R. G. Holly, R. L. Anderson, N. Rifai, M. E. King, and R. DeMeersman. 1989. Hyperlipemic response of young trained and untrained men after a high fat meal. Arteriosclerosis 9: 217 – 223.
dc.identifier.citedreferenceMetz, V. V., E. Kojro, D. Rat, and R. Postina. 2012. Induction of RAGE shedding by activation of G protein‐coupled receptors. PLoS ONE 7: e41823.
dc.identifier.citedreferenceMiller, M. C., R. Tavares, C. E. Johanson, V. Hovanesian, J. E. Donahue, L. Gonzalez, et al. 2008. Hippocampal RAGE immunoreactivity in early and advanced Alzheimer’s disease. Brain Res. 1230: 273 – 280.
dc.identifier.citedreferenceMiranda, E., V. Somal, J. Mey, B. Blackburn, E. Wang, S. Farabi, et al. 2017a. Circulating soluble rage isoforms are attenuated in obese, impaired glucose tolerant individuals and are associated with the development of type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 313: E631 – E640.
dc.identifier.citedreferenceMiranda, E., K. Varady, and J. Haus. 2017b. Weight loss via alternate day fasting increases circulating endogenous secretory rage and is associated with markers of adipocyte health. FASEB J. 31: 3.
dc.identifier.citedreferenceMiyazaki, H., S. Oh‐ishi, T. Ookawara, T. Kizaki, K. Toshinai, S. Ha, et al. 2001. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur. J. Appl. Physiol. 84: 1 – 6.
dc.identifier.citedreferenceNorata, G. D., G. Caligiuri, T. Chavakis, G. Matarese, M. G. Netea, A. Nicoletti, et al. 2015. The cellular and molecular basis of translational immunometabolism. Immunity 43: 421 – 434.
dc.identifier.citedreferenceOkazaki, S., M. Sakaguchi, K. Miwa, S. Furukado, H. Yamagami, Y. Yagita, et al. 2014. Association of interleukin‐6 with the progression of carotid atherosclerosis: a 9‐year follow‐up study. Stroke 45: 2924 – 2929.
dc.identifier.citedreferenceOstrowski, K., P. Schjerling, and B. K. Pedersen. 2000. Physical activity and plasma interleukin‐6 in humans–effect of intensity of exercise. Eur. J. Appl. Physiol. 83: 512 – 515.
dc.identifier.citedreferenceOtt, C., K. Jacobs, E. Haucke, A. N. Santos, T. Grune, and A. Simm. 2014. Role of advanced glycation end products in cellular signaling. Redox. Biol. 2: 411 – 429.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.