Show simple item record

Processingâ Dependent Microstructure of AgClâ CsAgCl2 Eutectic Photonic Crystals

dc.contributor.authorChoi, Jaewon
dc.contributor.authorKulkarni, Ashish A.
dc.contributor.authorHanson, Erik
dc.contributor.authorBacon‐brown, Daniel
dc.contributor.authorThornton, Katsuyo
dc.contributor.authorBraun, Paul V.
dc.date.accessioned2018-08-13T18:53:40Z
dc.date.available2019-09-04T20:15:39Zen
dc.date.issued2018-07
dc.identifier.citationChoi, Jaewon; Kulkarni, Ashish A.; Hanson, Erik; Bacon‐brown, Daniel ; Thornton, Katsuyo; Braun, Paul V. (2018). "Processingâ Dependent Microstructure of AgClâ CsAgCl2 Eutectic Photonic Crystals." Advanced Optical Materials 6(14): n/a-n/a.
dc.identifier.issn2195-1071
dc.identifier.issn2195-1071
dc.identifier.urihttps://hdl.handle.net/2027.42/145412
dc.description.abstractDirectional solidification of a eutectic melt allows control over the resultant eutectic microstructure, which in turn impacts both the mechanical and optical properties of the material. These selfâ organized phaseâ separated eutectic materials can be tuned to have periodicities from tens of micrometers down to nanometers. Furthermore, the two phases possess differences in their refractive index leading to interesting optical properties that can be tailored within the visible to infrared wavelength regime. It is found the binary salt eutectic AgClâ CsAgCl2 system forms a rod microstructure with sample draw rates up to 0.2 mm sâ 1 which transitions to a lamellar microstructure at draw rates greater than 0.36 mm sâ 1. Heatâ transfer simulations reveal a draw rateâ dependent direction of motion of the solidification front, which for a range of draw rates requires nucleation of the minority solid phase at the sample wall. Phaseâ field modeling indicates that the initial eutectic structure at the sample boundary, either rod or lamellar, dictates the bulk eutectic morphology. These samples contain submicrometer periodicities which coupled with their optical transparency results in them exhibiting draw rateâ dependent nearâ IR reflectance peaks consistent with stop bands for 2D hexagonal (rod) and 1D planar (lamellar) photonic crystals.The eutectic composition of the molten salts AgCl and CsCl exhibits a microstructural transition from rod to lamellar upon varying the draw rates controlled by directional solidification. This transition is dominated by the initial formation at the surface of either the rod or lamellar structure. The resultant eutectic microstructures have optical properties consistent with their being 2D and 1D photonic crystals.
dc.publisherPrinceton University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdirectional solidification
dc.subject.othermicrostructure transition
dc.subject.othereutectics
dc.subject.otherselfâ organized
dc.subject.otherphotonic crystals
dc.titleProcessingâ Dependent Microstructure of AgClâ CsAgCl2 Eutectic Photonic Crystals
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145412/1/adom201701316.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145412/2/adom201701316_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145412/3/adom201701316-sup-0001-S1.pdf
dc.identifier.doi10.1002/adom.201701316
dc.identifier.sourceAdvanced Optical Materials
dc.identifier.citedreferenceJ. Livingston, J. Appl. Phys. 1970, 41, 197.
dc.identifier.citedreferenceJ. Kim, L. K. Aagesen, J. H. Choi, J. Choi, H. S. Kim, J. Liu, C. R. Cho, J. G. Kang, A. Ramazani, K. Thornton, P. V. Braun, Adv. Mater. 2015, 27, 4551.
dc.identifier.citedreferenceD. A. Pawlak, K. Kolodziejak, S. Turczynski, J. Kisielewski, K. Rożniatowski, R. Diduszko, M. Kaczkan, M. Malinowski, Chem. Mater. 2006, 18, 2450.
dc.identifier.citedreferenceD. A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, I. Vendik, Adv. Funct. Mater. 2010, 20, 1116.
dc.identifier.citedreferenceK. Sadecka, M. Gajc, K. Orlinski, H. B. Surma, A. Klos, I. Jozwikâ Biala, K. Sobczak, P. Dluzewski, J. Toudert, D. A. Pawlak, Adv. Opt. Mater. 2015, 3, 381.
dc.identifier.citedreferenceZ. Yan, M. Han, Y. Shi, A. Badea, Y. Yang, A. Kulkarni, E. Hanson, M. E. Kandel, X. Wen, F. Zhang, Y. Luo, Q. Lin, H. Zhang, X. Guo, Y. Huang, K. Nan, S. Jia, A. W. Oraham, M. B. Mevis, J. Lim, X. Guo, M. Gao, W. Ryu, J. K. Yu, B. G. Nicolau, A. Petronico, S. S. Rubakhin, J. Lou, P. M. Ajayan, K. Thornton, G. Popescu, D. Fang, J. V. Sweedler, P. V. Braun, H. Zhang, R. G. Nuzzo, Y. Huang, Y. Zhang, J. A. Rogers, Proc. Natl. Acad. Sci. USA 2017, 114, E9455.
dc.identifier.citedreferenceN. Yasui, Y. Ohashi, T. Kobayashi, T. Den, Adv. Mater. 2012, 24, 5464.
dc.identifier.citedreferenceN. Yasui, T. Kobayashi, Y. Ohashi, T. Den, J. Cryst. Growth 2014, 399, 7.
dc.identifier.citedreferenceM. Massaouti, A. Basharin, M. Kafesaki, M. Acosta, R. Merino, V. Orera, E. Economou, C. Soukoulis, S. Tzortzakis, Opt. Lett. 2013, 38, 1140.
dc.identifier.citedreferenceA. Kisza, J. Dzielendziak, J. Kazmierczak, in Eleventh International Symposium on Molten Salts XI, Proc. Vol. 98 (Eds: P. C. Trulove, H. C. De Long, G. R. Stafford, S. Deki ), The Electrochemical Society, Inc., Pennington, NJ, USA 1998, p. 398.
dc.identifier.citedreferenceC. Sandonnini, G. Scarpa, Rendiconti Accademia Lincei 1912, 21, 77.
dc.identifier.citedreferenceS. Sternberg, M. Terzi, J. Chem. Thermodyn. 1971, 3, 259.
dc.identifier.citedreferenceK. N. Street, C. F. St. John, G. Piatti, J. Inst. Met. 1967, 95, 326.
dc.identifier.citedreferenceR. Racek, G. Lesoult, M. Turpin, J. Cryst. Growth 1974, 22, 210.
dc.identifier.citedreferenceW. Kurz, B. Lux, Metall. Mater. Trans. B 1971, 2, 329.
dc.identifier.citedreferenceL. Rátkai, G. I. Tóth, L. Környei, T. Pusztai, L. Gránásy, J. Mater. Sci. 2017, 52, 5544.
dc.identifier.citedreferenceS. Liu, J. Lee, R. Trivedi, Acta Mater. 2011, 59, 3102.
dc.identifier.citedreferenceM. Croker, R. Fidler, R. Smith, Proc. R. Soc. Lond. A 1973, 335, 15.
dc.identifier.citedreferenceA. Parisi, M. Plapp, Europhys. Lett. 2010, 90, 26010.
dc.identifier.citedreferenceJ. Hunt, J. Chilton, J. Inst. Met. 1963, 91, 338.
dc.identifier.citedreferenceM. Ginibre, S. Akamatsu, G. Faivre, Phys. Rev. E 1997, 56, 780.
dc.identifier.citedreferenceA. Parisi, M. Plapp, Acta Mater. 2008, 56, 1348.
dc.identifier.citedreferenceJ. Teng, S. Liu, R. Trivedi, Acta Mater. 2008, 56, 2819.
dc.identifier.citedreferenceX. Hu, A. Jain, K. E. Goodson, presented at ASME 2005 Summer Heat Transfer Conf. collocated with the ASME 2005 Pacific Rim Technical Conf. and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, San Francisco, California, USA, July 2005.
dc.identifier.citedreferenceR. Folch, M. Plapp, Phys. Rev. E 2005, 72, 011602.
dc.identifier.citedreferenceU. Hecht, L. Gránásy, T. Pusztai, B. Böttger, M. Apel, V. Witusiewicz, L. Ratke, J. De Wilde, L. Froyen, D. Camel, B. Drevet, G. Faivre, S. Fries, B. Legendre, S. Rex, Mater. Sci. Eng. R 2004, 46, 1.
dc.identifier.citedreferenceJ. Hunt, K. Jackson, Trans. Metall. Soc. AIME 1966, 236, 843.
dc.identifier.citedreferenceJ. Hunt, K. Jackson, Trans. Metall. Soc. AIME 1967, 239, 864.
dc.identifier.citedreferenceK. Jackson, J. Hunt, Trans. Metall. Soc. AIME 1966, 236, 1129.
dc.identifier.citedreferenceJ. Llorca, V. Orera, Prog. Mater. Sci. 2006, 51, 711.
dc.identifier.citedreferenceJ. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, NJ, USA 2011.
dc.identifier.citedreferenceK. A. Arpin, A. Mihi, H. T. Johnson, A. J. Baca, J. A. Rogers, J. A. Lewis, P. V. Braun, Adv. Mater. 2010, 22, 1084.
dc.identifier.citedreferenceJ. D. Joannopoulos, P. R. Villeneuve, S. Fan, Nature 1997, 386, 143.
dc.identifier.citedreferenceA. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. van Driel, Nature 2000, 405, 437.
dc.identifier.citedreferenceG. M. Gratson, F. Garcíaâ Santamaría, V. Lousse, M. Xu, S. Fan, J. A. Lewis, P. V. Braun, Adv. Mater. 2006, 18, 461.
dc.identifier.citedreferenceR. I. Merino, J. I. Pena, A. Larrea, G. F. de la Fuente, V. M. Orera, Recent Res. Dev. Mater. Sci. 2003, 4, 1.
dc.identifier.citedreferenceB. A. Parviz, D. Ryan, G. M. Whitesides, IEEE Trans. Adv. Packaging 2003, 26, 233.
dc.identifier.citedreferenceD. A. Pawlak, G. Lerondel, I. Dmytruk, Y. Kagamitani, S. Durbin, P. Royer, T. Fukuda, J. Appl. Phys. 2002, 91, 9731.
dc.identifier.citedreferenceY. A. Vlasov, X.â Z. Bo, J. C. Sturm, D. J. Norris, Nature 2001, 414, 289.
dc.identifier.citedreferenceM. F. Acosta, S. G. Rodrigo, L. Martínâ Moreno, C. Pecharromán, R. I. Merino, Adv. Opt. Mater. 2017, 5, 1600670.
dc.identifier.citedreferenceJ. W. Boley, K. Chaudhary, T. J. Ober, M. Khorasaninejad, W. T. Chen, E. Hanson, A. Kulkarni, J. Oh, J. Kim, L. K. Aagesen, A. Y. Zhu, F. Capasso, K. Thornton, P. V. Braun, J. A. Lewis, Adv. Mater. 2017, 29, 1604778.
dc.identifier.citedreferenceK. Fukutani, K. Tanji, T. Motoi, T. Den, Adv. Mater. 2004, 16, 1456.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.