Show simple item record

The Impact and Solar Wind Proxy of the 2017 September ICME Event at Mars

dc.contributor.authorMa, Yingjuan
dc.contributor.authorFang, Xiaohua
dc.contributor.authorHalekas, Jasper S.
dc.contributor.authorXu, Shaosui
dc.contributor.authorRussell, Christopher T.
dc.contributor.authorLuhmann, Janet G.
dc.contributor.authorNagy, Andrew F.
dc.contributor.authorToth, Gabor
dc.contributor.authorLee, Christina O.
dc.contributor.authorDong, Chuanfei
dc.contributor.authorEspley, Jared R.
dc.contributor.authorMcFadden, James P.
dc.contributor.authorMitchell, David L.
dc.contributor.authorJakosky, Bruce M.
dc.date.accessioned2018-09-04T20:08:18Z
dc.date.available2019-09-04T20:15:40Zen
dc.date.issued2018-08-16
dc.identifier.citationMa, Yingjuan; Fang, Xiaohua; Halekas, Jasper S.; Xu, Shaosui; Russell, Christopher T.; Luhmann, Janet G.; Nagy, Andrew F.; Toth, Gabor; Lee, Christina O.; Dong, Chuanfei; Espley, Jared R.; McFadden, James P.; Mitchell, David L.; Jakosky, Bruce M. (2018). "The Impact and Solar Wind Proxy of the 2017 September ICME Event at Mars." Geophysical Research Letters 45(15): 7248-7256.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/145524
dc.description.abstractWe study a large interplanetary coronal mass ejection event impacting Mars in mid‐September 2017 numerically. During this time period, MAVEN remained inside the Martian bow shock and therefore could not measure the solar wind directly. We first simulate the event using three steady state cases with estimated solar wind conditions and find that these cases were able to reproduce the general features observed by MAVEN. However, these time‐stationary runs cannot capture the response of the system to large variations in the solar wind associated with the event. To address this problem, we derive a solar wind proxy based on MAVEN observations in the sheath region and their comparison with steady state magnetohydrodynamic model results. The derived solar wind proxy is then used to drive a time‐dependent magnetohydrodynamic model, and we find that the data‐model comparison is greatly improved, especially in the magnetosheath. We are able to reproduce some detailed structures observed by MAVEN during the period, despite the lack of a direct measurement of the solar wind, indicating that the derived solar wind conditions are reliable. Finally, we examine in detail the impact of the event on the Martian system: including variations of the three typical plasma boundaries and the ion loss rates. Our results show that these plasma boundary locations varied drastically during the event, and the total ion loss rate was enhanced by more than an order of magnitude.Plain Language SummaryA large interplanetary coronal mass ejection event impacted on Mars in mid‐September 2017. We use a numerical model to study in detail about the effect of the interplanetary coronal mass ejection on the Mars plasma environments. The model results are in good agreement with MAVEN observations, despite the lack of a direct measurement of the solar wind. We also examine in detail variations of typical plasma boundaries and the ion loss rates and found that the plasma boundary locations varied drastically during the event, and the total ion loss rate was enhanced by more than an order of magnitude.Key PointsA solar wind proxy method is developed and validated for the 2017 September ICME eventTime‐dependent MHD model reproduces detailed structures observed by MAVEN for the ICME eventModel predicts drastic variation of plasma boundaries and large enhancement of ion loss rates during the event
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMHD
dc.subject.otherICME
dc.subject.otherMars
dc.titleThe Impact and Solar Wind Proxy of the 2017 September ICME Event at Mars
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145524/1/grl57377.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145524/2/grl57377_am.pdf
dc.identifier.doi10.1029/2018GL077707
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceMa, Y., Nagy, A. F., Sokolov, I. V., & Hansen, K. C. ( 2004 ). Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. Journal of Geophysical Research, 109, A07211. https://doi.org/10.1029/2003JA010367
dc.identifier.citedreferenceAcuna, M. H., Connerney, J. E., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W., et al. ( 1999 ). Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 284 ( 5415 ), 790 – 793.
dc.identifier.citedreferenceConnerney, J. E. P., Espley, J. R., DiBraccio, G. A., Gruesbeck, J. R., Oliversen, R. J., Mitchell, D. L., et al. ( 2015 ). First results of the MAVEN magnetic field investigation. Geophysical Research Letters, 42, 8819 – 8827. https://doi.org/10.1002/2015GL065366
dc.identifier.citedreferenceConnerney, J. E. P., Espley, J. R., Lawton, P., Murphy, S., Odom, J., Oliversen, R., & Sheppard, D. ( 2015 ). The MAVEN magnetic field investigation. Space Science Reviews, 195 ( 1‐4 ), 257 – 291. https://doi.org/10.1007/s11214‐015‐0169‐4
dc.identifier.citedreferenceCrider, D. H., Espley, J., Brain, D. A., Mitchell, D. L., Connerney, J. E. P., & Acuña, M. H. ( 2005 ). Mars Global Surveyor observations of the Halloween 2003 solar superstorm’s encounter with Mars. Journal of Geophysical Research, 110, A09S21. https://doi.org/10.1029/2004JA010881
dc.identifier.citedreferenceCurry, S. M., Luhmann, J. G., Ma, Y. J., Dong, C. F., Brain, D., Leblanc, F., et al. ( 2015 ). MAVEN first results: The response of pick‐up ions to the March 8th, 2015 ICME. Geophysical Research Letters, 42, 9095 – 9102. https://doi.org/10.1002/2015GL065304
dc.identifier.citedreferenceDong, C., Ma, Y., Bougher, S. W., Toth, G., Nagy, A. F., Halekas, J. S., et al. ( 2015 ). Multifluid MHD study of the solar wind interaction with Mars’ upper atmosphere during the 2015 March 8th ICME event. Geophysical Research Letters, 42, 9103 – 9112. https://doi.org/10.1002/2015GL065944
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Woch, J., Duru, F., Gurnett, D., Modolo, R., et al. ( 2009 ). Ionospheric storms on Mars: Impact of corotating interaction region. Geophysical Research Letters, 36, L01105. https://doi.org/10.1029/2008GL036559
dc.identifier.citedreferenceEdberg, N. J. T., Auster, U., Barabash, S., Bößwetter, A., Brain, D. A., Burch, J. L., et al. ( 2009 ). Rosetta and Mars Express observations of the influence of high solar wind dynamic pressure on the Martian plasma environment. Annales Geophysique, 27 ( 12 ), 4533 – 4545. https://doi.org/10.5194/angeo‐27‐4533‐2009
dc.identifier.citedreferenceEdberg, N. J. T., Nilsson, H., Williams, A. O., Lester, M., Milan, S. E., Cowley, S. W. H., et al. ( 2010 ). Pumping out the atmosphere of Mars through solar wind pressure pulses. Geophysical Research Letters, 37, L03107. https://doi.org/10.1029/2009GL041814
dc.identifier.citedreferenceFang, X., Ma, Y., Brain, D., Dong, Y., & Lillis, R. ( 2015 ). Control of Mars global atmospheric loss by the continuous rotation of the crustal magnetic field: A time‐dependent MHD study. Journal of Geophysical Research: Space Physics, 120, 10,926 – 10,944. https://doi.org/10.1002/2015JA021605
dc.identifier.citedreferenceFang, X., Ma, Y., Luhmann, J. G., Dong, Y., Brain, D. A., Hurley, D. M., et al. ( 2018 ). The morphology of the solar wind magnetic field draping on the dayside of Mars and its variability. Geophysical Research Letters, 45. https://doi.org/10.1002/2018GL077230
dc.identifier.citedreferenceFang, X., Ma, Y., Masunaga, K., Dong, Y., Brain, D., Halekas, J., et al. ( 2017 ). The Mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN. Journal of Geophysical Research: Space Physics, 122, 4117 – 4137. https://doi.org/10.1002/2016JA023509
dc.identifier.citedreferenceHaider, S. A., Abdu, M. A., Batista, I. S., Sobral, J. H., Kallio, E., Maguire, W. C., & Verigin, M. I. ( 2009 ). On the responses to solar X‐ray flare and coronal mass ejection in the ionospheres of Mars and Earth. Geophysical Research Letters, 36, L13104. https://doi.org/10.1029/2009GL038694
dc.identifier.citedreferenceHalekas, J., Taylor, E., Dalton, G., Johnson, G., Curtis, D., McFadden, J., et al. ( 2015 ). The Solar Wind Ion Analyzer for MAVEN. Space Science Reviews, 195 ( 1‐4 ), 125 – 151. https://doi.org/10.1007/s11214‐013‐0029‐z
dc.identifier.citedreferenceHalekas, J. S., Lillis, R. J., Mitchell, D. L., Cravens, T. E., Mazelle, C., Connerney, J. E. P., et al. ( 2015 ). MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars. Geophysical Research Letters, 42, 8901 – 8909. https://doi.org/10.1002/2015GL064693
dc.identifier.citedreferenceHalekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L., Mazelle, C., et al. ( 2017 ). Structure, dynamics, and seasonal variability of the Mars‐solar wind interaction: MAVEN Solar Wind Ion Analyzer in‐flight performance and science results. Journal of Geophysical Research: Space Physics, 122, 547 – 578. https://doi.org/10.1002/2016JA023167
dc.identifier.citedreferenceHara, T., Luhmann, J. G., Halekas, J. S., Espley, J. R., Seki, K., Brain, D. A., et al. ( 2016 ). MAVEN observations of magnetic flux ropes with a strong field amplitude in the Martian magnetosheath during the ICME passage on 8 March 2015. Geophysical Research Letters, 43, 4816 – 4824. https://doi.org/10.1002/2016GL068960
dc.identifier.citedreferenceJakosky, B. M., Grebowsky, J. M., Luhmann, J. G., Connerney, J., Eparvier, F., Ergun, R., et al. ( 2015 ). MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 350 ( 6261 ), aad0210. https://doi.org/10.1126/science.aad0210
dc.identifier.citedreferenceLee, C. O., Jakosky, B. M., Luhmann, J. G., Brain, D. A., Mays, M. L., Hassler, D. M., Holmstrom, M., Larson, D. E., Mitchell, D. L., Mazelle, C., and Halekas, J. S. ( 2018 ). Observations and impacts of the 10 September 2017 solar events at Mars: An overview and synthesis of the initial results. Geophysical Research Letters, https://doi.org/10.1029/2018GL079162.
dc.identifier.citedreferenceMa, Y. J., Fang, X., Nagy, A. F., Russell, C. T., & Toth, G. ( 2014 ). Martian ionospheric responses to dynamic pressure enhancements in the solar wind. Journal of Geophysical Research: Space Physics, 119, 1272 – 1286. https://doi.org/10.1002/2013JA019402
dc.identifier.citedreferenceMa, Y. J., Russell, C. T., Fang, X., Dong, C. F., Nagy, A. F., Toth, G., et al. ( 2017 ). Variations of the Martian plasma environment during the ICME passage on 8 March 2015: A time‐dependent MHD study. Journal of Geophysical Research: Space Physics, 122, 1714 – 1730. https://doi.org/10.1002/2016JA023402
dc.identifier.citedreferenceMa, Y. J., Russell, C. T., Fang, X., Dong, Y., Nagy, A. F., Toth, G., et al. ( 2015 ). MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations. Geophysical Research Letters, 42, 9113 – 9120. https://doi.org/10.1002/2015GL065218
dc.identifier.citedreferenceMcFadden, J. P., Kortmann, O., Curtis, D., Dalton, G., Johnson, G., Abiad, R., et al. ( 2015 ). The MAVEN Suprathermal and Thermal Ion Composition (STATIC) instrument. Space Science Reviews, 195 ( 1‐4 ), 199 – 256. https://doi.org/10.1007/s11214‐015‐0175‐6
dc.identifier.citedreferenceMitchell, D. L., Mazelle, C., Sauvaud, J. A., Thocaven, J. J., Rouzaud, J., Fedorov, A., et al. ( 2016 ). The MAVEN Solar Wind Electron Analyzer. Space Science Reviews, 200 ( 1‐4 ), 495 – 528. https://doi.org/10.1007/s11214‐015‐0232‐1
dc.identifier.citedreferenceMorgan, D. D., Diéval, C., Gurnett, D. A., Duru, F., Dubinin, E. M., Fränz, M., et al. ( 2014 ). Effects of a strong ICME on the Martian ionosphere as detected by Mars Express and Mars Odyssey. Journal of Geophysical Research: Space Physics, 119, 5891 – 5908. https://doi.org/10.1002/2013JA019522
dc.identifier.citedreferenceMorschhauser, A., Lesur, V., & Grott, M. ( 2014 ). A spherical harmonic model of the lithospheric magnetic field of Mars. Journal of Geophysical Research: Planets, 119, 1162 – 1188. https://doi.org/10.1002/2013JE004555
dc.identifier.citedreferenceOpgenoorth, H. J., Andrews, D. J., Fränz, M., Lester, M., Edberg, N. J. T., Morgan, D., et al. ( 2013 ). Mars ionospheric response to solar wind variability. Journal of Geophysical Research: Space Physics, 118, 6558 – 6587. https://doi.org/10.1002/jgra.50537
dc.identifier.citedreferenceRamstad, R., Barabash, S., Futaana, Y., Nilsson, H., Wang, X.‐D., & Holmström, M. ( 2015 ). The Martian atmospheric ion escape rate dependence on solar wind and solar EUV conditions: 1. Seven years of Mars Express observations. Journal of Geophysical Research: Planets, 120, 1298 – 1309. https://doi.org/10.1002/2015JE004816
dc.identifier.citedreferenceXu, S., Fang, X., Mitchell, D. L., Ma, Y., Luhmann, J. G., DiBraccio, G. A., et al. ( 2018 ). Investigation of Martian magnetic topology response to 2017 September ICME. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL077708
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.