Show simple item record

Work Function Modification via Combined Charge‐Based Through‐Space Interaction and Surface Interaction

dc.contributor.authorYang, Da Seul
dc.contributor.authorBilby, David
dc.contributor.authorChung, Kyeongwoon
dc.contributor.authorWenderott, Jill K.
dc.contributor.authorJordahl, Jacob
dc.contributor.authorKim, Bo Hyun
dc.contributor.authorLahann, Joerg
dc.contributor.authorGreen, Peter F.
dc.contributor.authorKim, Jinsang
dc.date.accessioned2018-09-04T20:08:41Z
dc.date.available2019-09-04T20:15:39Zen
dc.date.issued2018-08
dc.identifier.citationYang, Da Seul; Bilby, David; Chung, Kyeongwoon; Wenderott, Jill K.; Jordahl, Jacob; Kim, Bo Hyun; Lahann, Joerg; Green, Peter F.; Kim, Jinsang (2018). "Work Function Modification via Combined Charge‐Based Through‐Space Interaction and Surface Interaction." Advanced Materials Interfaces 5(15): n/a-n/a.
dc.identifier.issn2196-7350
dc.identifier.issn2196-7350
dc.identifier.urihttps://hdl.handle.net/2027.42/145536
dc.description.abstractWork function modification of electrodes is an important factor to achieve high performance in organic electronics. However, a clear explanation of the origin of work function modification has remained elusive. Here, it is investigated how the work function of electrodes is affected by the charge‐based through‐space interaction with the well‐known surface interaction. The studies reveal that the formation of a surface dipole leads to a work function shift, even when the work function modifying layer and substrate are separated. A work function shift is also demonstrated by electrophoretic deposition of ionic polyelectrolytes while the same polyelectrolytes do not cause any work function shift when they are spin cast. More noteworthy is that a neutral (nonionic) polymer which has no specific surface‐interacting functional groups can induce work function shift of its substrate by a charge‐based through‐space interaction when deposited by electrospraying. These results provide a more comprehensive understanding of work function modification and motivate the design and selection of a wide range of effective work function modifying layers for organic electronics.Work function modification of indium tin oxide (ITO) by thin‐layer polymer coating is investigated with a set of representative polyelectrolytes. The studies reveal that while direct surface interaction is the major factor affecting work function modification, charge‐based through‐space interaction has also a significant effect on modifying the work function of electrodes by building opposite charges on ITO.
dc.publisherW. H. Freeman and Company
dc.publisherWiley Periodicals, Inc.
dc.subject.otherorganic electronics
dc.subject.otherpolyelectrolyte
dc.subject.otherwork function
dc.titleWork Function Modification via Combined Charge‐Based Through‐Space Interaction and Surface Interaction
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145536/1/admi201800471-sup-0001-S1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145536/2/admi201800471.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145536/3/admi201800471_am.pdf
dc.identifier.doi10.1002/admi.201800471
dc.identifier.sourceAdvanced Materials Interfaces
dc.identifier.citedreferenceB. H. Lee, I. H. Jung, H. Y. Woo, H. K. Shim, G. Kim, K. Lee, Adv. Funct. Mater. 2014, 24, 1100.
dc.identifier.citedreferenceK.‐G. Lim, M.‐R. Choi, T.‐W. Lee, Mater. Today Energy 2017, 5, 66.
dc.identifier.citedreferenceK.‐G. Lim, S. M. Park, H. Y. Woo, T.‐W. Lee, ChemSusChem 2015, 8, 3062.
dc.identifier.citedreferenceL.‐M. Chen, Z. Xu, Z. Hong, Y. Yang, J. Mater. Chem. 2010, 20, 2575.
dc.identifier.citedreferenceR. Xia, D.‐S. Leem, T. Kirchartz, S. Spencer, C. Murphy, Z. He, H. Wu, S. Su, Y. Cao, J. S. Kim, J. C. Demello, D. D. C. Bradley, J. Nelson, Adv. Energy Mater. 2013, 3, 718.
dc.identifier.citedreferenceK. Sun, H. Zhang, J. Ouyang, J. Mater. Chem. 2011, 21, 18339.
dc.identifier.citedreferenceK.‐G. Lim, S. Ahn, T.‐W. Lee, J. Mater. Chem. C 2018, 6, 2915.
dc.identifier.citedreferenceS. Braun, W. R. Salaneck, M. Fahlman, Adv. Mater. 2009, 21, 1450.
dc.identifier.citedreferenceJ. Schwartz, E. L. Bruner, N. Koch, A. R. Span, S. L. Bernasek, A. Kahn, Synth. Met. 2003, 138, 223.
dc.identifier.citedreferenceW. Osikowicz, M. P. de Jong, S. Braun, C. Tengstedt, M. Fahlman, W. R. Salaneck, Appl. Phys. Lett. 2006, 88, 193504.
dc.identifier.citedreferenceG. Witte, S. Lukas, P. S. Bagus, C. Wöll, Appl. Phys. Lett. 2005, 87, 263502.
dc.identifier.citedreferenceM. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, J. Qiu, Z. H. Lu, Nat. Mater. 2011, 11, 76.
dc.identifier.citedreferenceJ. Niederhausen, P. Amsalem, A. Wilke, R. Schlesinger, S. Winkler, A. Vollmer, J. P. Rabe, N. Koch, Phys. Rev. B 2012, 86, 081411(R).
dc.identifier.citedreferenceM. Oehzelt, N. Koch, G. Heimel, Nat. Commun. 2014, 5, 4174.
dc.identifier.citedreferenceH. Kang, S. Hong, J. Lee, K. Lee, Adv. Mater. 2012, 24, 3005.
dc.identifier.citedreferenceR. Schlapak, D. Armitage, N. Saucedo‐zeni, G. Latini, H. J. Gruber, P. Mesquida, Y. Samotskaya, M. Hohage, F. Cacialli, S. Howorka, Langmuir 2007, 23, 8916.
dc.identifier.citedreferenceY. Liu, V. V. Duzhko, Z. A. Page, T. Emrick, T. P. Russell, Acc. Chem. Res. 2016, 49, 2478.
dc.identifier.citedreferenceK. P. Singh, P. N. Gupta, Eur. Polym. J. 1998, 34, 1023.
dc.identifier.citedreferenceO. Yano, Y. Wada, J. Polym. Sci., Part A‐2: Polym. Phys. 1971, 9, 669.
dc.identifier.citedreferenceP. Atkins, J. de Paula, Physical Chemistry, 9th ed., W. H. Freeman and Company, NY 2010.
dc.identifier.citedreferenceP. Sarkar, P. S. Nicholson, J. Am. Ceram. Soc. 1996, 79, 1987.
dc.identifier.citedreferenceD. Hertkorn, H. C. Elsenheimer, R. Bruch, F. Paul, C. Müller, T. Hanemann, H. Reinecke, J. Appl. Phys. 2013, 114, 027020.
dc.identifier.citedreferenceC. Cho, K. L. Wallace, D. A. Hagen, B. Stevens, O. Regev, J. C. Grunlan, Nanotechnology 2015, 26, 185703.
dc.identifier.citedreferenceR. B. Cole, Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Practicalities, and Biological Applications, 2nd edition, John Wiley & Sons, Inc., Hoboken, NJ 2010.
dc.identifier.citedreferenceS. H. Keshmiri, M. Rezaee‐Roknabadi, S. Ashok, Thin Solid Films 2002, 413, 167.
dc.identifier.citedreferenceD. Bilby, B. Frieberg, S. Kramadhati, P. Green, J. Kim, ACS Appl. Mater. Interfaces 2014, 6, 14964.
dc.identifier.citedreferenceJ. K. Wenderott, B. X. Dong, P. F. Green, J. Mater. Chem. C 2017, 5, 7446.
dc.identifier.citedreferenceY. Zhou, C. Fuentes‐Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. Brédas, S. R. Marder, A. Kahn, B. Kippelen, Science 2012, 336, 327.
dc.identifier.citedreferenceE. L. Ratcliff, B. Zacher, N. R. Armstrong, J. Phys. Chem. Lett. 2011, 2, 1337.
dc.identifier.citedreferenceR. Po, C. Carbonera, A. Bernardi, N. Camaioni, Energy Environ. Sci. 2011, 4, 285.
dc.identifier.citedreferenceY. H. Kim, T. H. Han, H. Cho, S. Y. Min, C. L. Lee, T. W. Lee, Adv. Funct. Mater. 2014, 24, 3808.
dc.identifier.citedreferenceR. Shivanna, S. Rajaram, K. S. Narayan, Appl. Phys. Lett. 2015, 106, 123301.
dc.identifier.citedreferenceZ. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photonics 2012, 6, 593.
dc.identifier.citedreferenceH. Li, P. Paramonov, J.‐L. Brédas, J. Mater. Chem. 2010, 20, 2630.
dc.identifier.citedreferenceH. Wang, E. D. Gomez, Z. Guan, C. Jaye, M. F. Toney, D. A. Fischer, A. Kahn, Y.‐L. Loo, J. Phys. Chem. C 2013, 117, 20474.
dc.identifier.citedreferenceA. Sharma, A. Haldi, W. J. Potscavage Jr., P. J. Hotchkiss, S. R. Marder, B. Kippelen, J. Mater. Chem. 2009, 19, 5298.
dc.identifier.citedreferenceJ. S. Kim, J. H. Park, J. H. Lee, J. Jo, D.‐Y. Kim, K. Cho, Appl. Phys. Lett. 2007, 91, 112111.
dc.identifier.citedreferenceW. Osikowicz, X. Crispin, C. Tengstedt, L. Lindell, T. Kugler, W. R. Salaneck, Appl. Phys. Lett. 2004, 85, 1616.
dc.identifier.citedreferenceC. Ganzorig, K.‐J. Kwak, K. Yagi, M. Fujihira, Appl. Phys. Lett. 2001, 79, 272.
dc.identifier.citedreferenceH.‐W. Lu, P.‐C. Kao, Y.‐D. Juang, S.‐Y. Chu, J. Appl. Phys. 2015, 118, 185501.
dc.identifier.citedreferenceS. van Reenen, S. Kouijzer, R. A. J. Janssen, M. M. Wienk, M. Kemerink, Adv. Mater. Interfaces 2014, 1, 1400189.
dc.identifier.citedreferenceJ. Lee, H. Kang, J. Kong, K. Lee, Adv. Energy Mater. 2014, 4, 1301226.
dc.identifier.citedreferenceH. Wu, F. Huang, J. Peng, Y. Cao, Org. Electron. 2005, 6, 118.
dc.identifier.citedreferenceB. Bröker, R.‐P. Blum, J. Frisch, A. Vollmer, O. T. Hofmann, R. Rieger, K. Müllen, J. P. Rabe, E. Zojer, N. Koch, Appl. Phys. Lett. 2008, 93, 243303.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.