Show simple item record

Effects of a Solar Flare on the Martian Hot O Corona and Photochemical Escape

dc.contributor.authorLee, Yuni
dc.contributor.authorDong, Chuanfei
dc.contributor.authorPawlowski, Dave
dc.contributor.authorThiemann, Edward
dc.contributor.authorTenishev, Valeriy
dc.contributor.authorMahaffy, Paul
dc.contributor.authorBenna, Mehdi
dc.contributor.authorCombi, Michael
dc.contributor.authorBougher, Stephen
dc.contributor.authorEparvier, Frank
dc.date.accessioned2018-09-04T20:09:02Z
dc.date.available2019-09-04T20:15:39Zen
dc.date.issued2018-07-28
dc.identifier.citationLee, Yuni; Dong, Chuanfei; Pawlowski, Dave; Thiemann, Edward; Tenishev, Valeriy; Mahaffy, Paul; Benna, Mehdi; Combi, Michael; Bougher, Stephen; Eparvier, Frank (2018). "Effects of a Solar Flare on the Martian Hot O Corona and Photochemical Escape." Geophysical Research Letters 45(14): 6814-6822.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/145552
dc.description.abstractWe examine for the first time the flare‐induced effects on the Martian hot O corona. The rapid ionospheric response to the increase in the soft X‐ray flux (~800%) facilitates more hot O production at altitudes below the main ionospheric peak, but almost all of these atoms are thermalized before escape. In response to the increase in the extreme ultraviolet (EUV) flux (~170%), the overall upper ionospheric and thermospheric densities are enhanced, and the peak thermospheric responses are found ~1.5 hr later. The photochemical escape rate is predicted to increase by ~20% with the increases in the soft X‐ray and EUV fluxes but decrease rapidly by ~13% about 2.5 hr later before recovering the preflare level. Since escaping hot O atoms are mostly produced at high altitudes where ionization by the EUV flux is the greatest, the main contributor to the 20% increase in escape rate is the enhancement in the EUV flux.Plain Language SummaryWe present for the first time the flare‐induced effects on the loss of neutral O atoms from the atmosphere of Mars. This study found that the main contributor to the sudden increase in the O loss rate is the increase in the solar extreme ultraviolet flux during the flare event, which induces more energetic O atoms at high altitudes where they can easily escape to space. Our investigation will contribute to the earlier works on the atmospheric loss from Mars by providing additional knowledge about the variability of the neutral escape.Key PointsWe examine for the first time the flare‐induced effects on the Martian hot O corona and photochemical escapeThe photochemical escape rate increases by ~20% in the case that describes the peak response time of the ionosphere during the flare eventWe found that the main contributor to the increase in escape rate is the enhancement in the EUV flux
dc.publisherPeter Peregrinus
dc.publisherWiley Periodicals, Inc.
dc.subject.othernumerical simulation
dc.subject.otherMars upper atmosphere
dc.subject.otherphotochemical escape
dc.subject.otherhot O corona
dc.subject.othersolar flare
dc.subject.otherMAVEN mission
dc.titleEffects of a Solar Flare on the Martian Hot O Corona and Photochemical Escape
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145552/1/grl57586_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145552/2/grl57586.pdf
dc.identifier.doi10.1029/2018GL077732
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceMorschhauser, A., Lesur, V., & Grott, M. ( 2014 ). A spherical harmonic model of the lithospheric magnetic field of Mars. Journal of Geophysical Research: Planets, 119, 1162 – 1188. https://doi.org/10.1002/2013JE004555
dc.identifier.citedreferenceElrod, M. K., Curry, S. M., Thiemann, E. M. B., & Jain, S. K. ( 2018 ). September 2017 solar flare event: Rapid heating of the Martian neutral upper atmosphere from the X‐class flare as observed by MAVEN. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL077729
dc.identifier.citedreferenceEparvier, F. G., Chamberlin, P. C., Woods, T. N., & Thiemann, E. M. B. ( 2015 ). The solar extreme ultraviolet monitor for MAVEN. Space Science Reviews, 195 ( 1–4 ), 293 – 301. https://doi.org/10.1007/s11214‐015‐0195‐2
dc.identifier.citedreferenceFox, J. L. ( 2004 ). Response of the Martian thermosphere/ionosphere to enhanced fluxes of solar soft X rays. Journal of Geophysical Research, 109, A11310. https://doi.org/10.1029/2004JA010380
dc.identifier.citedreferenceFox, J. L., & Hać, A. B. ( 2009 ). Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method. Icarus, 204, 527 – 544. https://doi.org/10.1016/j.icarus.2009.07.005
dc.identifier.citedreferenceFox, J. L., & Hać, A. B. ( 2014 ). The escape of O from Mars: Sensitivity to the elastic cross sections. Icarus, 228, 375 – 385. https://doi.org/10.1016/j.icarus.2013.10.014
dc.identifier.citedreferenceGröller, H., Lichtenegger, H., Lammer, H., & Shematovich, V. I. ( 2014 ). Hot oxygen and carbon escape from the martian atmosphere. Planetary and Space Science, 98, 93 – 105. https://doi.org/10.1016/j.pss.2014.01.007
dc.identifier.citedreferenceJakosky, B. M., Lin, R. P., Grebowksy, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., et al. ( 2015 ). The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Science Reviews, 195 ( 1‐4 ), 3 – 48. https://doi.org/10.1007/s11214‐015‐0139‐x
dc.identifier.citedreferenceLe, H., Liu, L., Chen, B., Lei, J., Yue, X., & Wan, W. ( 2007 ). Modeling the responses of the middle latitude ionosphere to solar flares. Journal of Atmospheric and Solar ‐ Terrestrial Physics, 69 ( 13 ), 1587 – 1598. https://doi.org/10.1016/j.jastp.2007.06.005
dc.identifier.citedreferenceLee, Y., Combi, M. R., Tenishev, V., & Bougher, S. W. ( 2014a ). Hot carbon corona in Mars’ upper thermosphere and exosphere: 1. Mechanisms and structure of the hot corona for low solar activity at equinox. Journal of Geophysical Research: Planets, 119, 905 – 924. https://doi.org/10.1002/2013JE004552
dc.identifier.citedreferenceLee, Y., Combi, M. R., Tenishev, V., & Bougher, S. W. ( 2014b ). Hot carbon corona in Mars’ upper thermosphere and exosphere: 2. Solar cycle and seasonal variability. Journal of Geophysical Research: Planets, 119, 2487 – 2509. https://doi.org/10.1002/2014JE004669
dc.identifier.citedreferenceLee, Y., Combi, M. R., Tenishev, V., Bougher, S. W., Deighan, J., Schneider, N. M., et al. ( 2015 ). A comparison of 3‐D model predictions of Mars’ oxygen corona with early MAVEN IUVS observations. Geophysical Research Letters, 42, 9015 – 9022. https://doi.org/10.1002/2015GL065291
dc.identifier.citedreferenceLee, Y., Combi, M. R., Tenishev, V., Bougher, S. W., & Lillis, R. J. ( 2015 ). Hot oxygen corona at Mars and the photochemical escape of oxygen: Improved description of the thermosphere, ionosphere, and exosphere. Journal of Geophysical Research: Planets, 120, 1880 – 1892. https://doi.org/10.1002/2015JE004890
dc.identifier.citedreferenceLillis, R. J., Deighan, J., Jane Fox, S., Bougher, Y., Lee, M., Combi, T. E. C., et al. ( 2017 ). Photochemical escape of oxygen from Mars: First results from MAVEN in situ data. Journal of Geophysical Research: Space Physics, 122, 3815 – 3836. https://doi.org/10.1002/2016JA023525
dc.identifier.citedreferenceLollo, A., Withers, P., Fallows, K., Girazian, Z., Matta, M., & Chamberlin, P. C. ( 2012 ). Numerical simulations of the ionosphere of Mars during a solar flare. Journal of Geophysical Research, 117, A05314. https://doi.org/10.1029/2011JA017399
dc.identifier.citedreferenceMa, Y., Fang, X., Halekas, J. S., Xu, S., Russell, C. T., Luhmann, J. G., et al. ( 2018 ). The impact and solar wind proxy of the 2017 September ICME event at Mars. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL077707
dc.identifier.citedreferenceMahaffy, P. R., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., et al. ( 2014 ). The Neutral Gas and Ion Mass Spectrometer on the Mars atmosphere and volatile evolution mission. Space Science Reviews, 195 ( 1‐4 ), 49 – 73. https://doi.org/10.1007/s11214‐014‐0091‐1
dc.identifier.citedreferenceMendillo, M., & Evans, J. V. ( 1974 ). Incoherent scatter observations of the ionospheric response to a large solar flare. Radio Science, 9 ( 2 ), 197 – 203. https://doi.org/10.1029/RS009i002p00197
dc.identifier.citedreferenceNajib, D., Nagy, A. F., Toth, G., & Ma, Y. J. ( 2011 ). Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars. Journal of Geophysical Research, 116, A05204. https://doi.org/10.1029/2010JA016272.
dc.identifier.citedreferenceQian, L., Burns, A. G., Chamberlin, P. C., & Solomon, S. C. ( 2011 ). Variability of thermosphere and ionosphere responses to solar flares. Journal of Geophysical Research, 116, A10309. https://doi.org/10.1029/2011JA016777
dc.identifier.citedreferenceRahmati, A., Larson, D. E., Cravens, T. E., Lillis, R. J., Halekas, J. S., McFadden, J. P., et al. ( 2017 ). MAVEN measured oxygen and hydrogen pickup ions: Probing the Martian exosphere and neutral escape. Journal of Geophysical Research: Space Physics, 122, 3689 – 3706. https://doi.org/10.1002/2016JA023371
dc.identifier.citedreferenceRidley, A. J., Deng, Y., & Toth, G. ( 2006 ). The global ionosphere‐thermosphere model. Journal of Atmospheric and Solar ‐ Terrestrial Physics, 68 ( 8 ), 839 – 864. https://doi.org/10.1016/j.jastp.2006.01.008
dc.identifier.citedreferenceTenishev, V., Combi, M. R., & Davidsson, B. ( 2008 ). A global kinetic model for cometary comae. The evolution of the coma of the Rosetta target comet Churyumov–Gerasimenko throughout the mission. The Astrophysical Journal, 685 ( 1 ), 659 – 677. https://doi.org/10.1086/590376
dc.identifier.citedreferenceTenishev, V., Rubin, M., Tucker, O. J., Combi, M. R., & Sarantos, M. ( 2013 ). Kinetic modeling of sodium in the lunar exosphere. Icarus, 226 ( 2 ), 1538 – 1549. https://doi.org/10.1016/j.icarus.2013.08.021
dc.identifier.citedreferenceThiemann, E., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., & Jakosky, B. M. ( 2017 ). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. Journal of Geophysical Research: Space Physics, 122, 2748 – 2767. https://doi.org/10.1002/2016JA023512
dc.identifier.citedreferenceThiemann, E. M. B., Andersson, L. A., Lillis, R., Withers, P., Xu, S., Elrod, M., et al. ( 2018 ). The Mars topside ionosphere response to the X8.2 solar flare of 10 September 2017. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL077730
dc.identifier.citedreferenceThome, G. D., & Wagner, L. S. ( 1971 ). Electron density enhancements in the E‐ and F‐regions of the ionosphere during solar flares. Journal of Geophysical Research, 76 ( 28 ), 6883 – 6895. https://doi.org/10.1029/JA076i028p06883
dc.identifier.citedreferenceValeille, A., Tenishev, V., Bougher, S. W., Combi, M. R., & Nagy, A. F. ( 2009a ). Three‐dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions. Journal of Geophysical Research, 114, E11005. https://doi.org/10.1029/2009JE003388
dc.identifier.citedreferenceValeille, A., Combi, M. R., Bougher, S. W., Tenishev, V., & Nagy, A. F. ( 2009b ). Three‐dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history. Journal of Geophysical Research, 114, E11006. https://doi.org/10.1029/2009JE003389
dc.identifier.citedreferenceYagi, M., Leblanc, F., Chaufray, J. Y., Gonzalez‐Galindo, F., Hess, S., & Modolo, R. ( 2012 ). Mars exospheric thermal and non‐thermal components: Seasonal and local variations. Icarus, 221 ( 2 ), 682 – 693. https://doi.org/10.1016/j.icarus.2012.07.022
dc.identifier.citedreferenceBougher, S. W., Blelly, P.‐L., Combi, M., Fox, J. L., Mueller‐Wodarg, I., Ridley, A., & Roble, R. G. ( 2008 ). Neutral upper atmosphere and ionosphere modeling. Space Science Reviews, 139 ( 1‐4 ), 107 – 141. https://doi.org/10.1007/s11214‐008‐9401‐9
dc.identifier.citedreferenceBougher, S. W., Pawlowski, D. J., Bell, J. M., Nelli, S., McDunn, T., Murphy, J. R., et al. ( 2015 ). Mars global ionosphere‐thermosphere model (MGITM): Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. Journal of Geophysical Research: Planets, 120, 311 – 342. https://doi.org/10.1002/2014JE004715
dc.identifier.citedreferenceBougher, S. W., Roeten, K., Olsen, K., Mahaffy, P. R., Benna, M., Elrod, M., et al. ( 2017 ). The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. Journal of Geophysical Research: Space Physics, 122, 1296 – 1313. https://doi.org/10.1002/2016JA023454
dc.identifier.citedreferenceChamberlin, P. C., Woods, T. N., & Eparvier, F. G. ( 2007 ). Flare Irradiance Spectral Model (FISM): Daily component algorithms and results. Space Weather, 5, S07005. https://doi.org/10.1029/2007SW000316
dc.identifier.citedreferenceChamberlin, P. C., Woods, T. N., & Eparvier, F. G. ( 2008 ). Flare Irradiance Spectral Model (FISM): Flare component algorithms and results. Space Weather, 6, S05001. https://doi.org/10.1029/2007SW00372
dc.identifier.citedreferenceCravens, T. E., Rahmati, A., Jane, L., Fox, R., Lillis, S., Bougher, J., et al. ( 2017 ). Hot oxygen escape from Mars: Simple scaling with solar EUV irradiance. Journal of Geophysical Research: Space Physics, 122, 1102 – 1116. https://doi.org/10.1002/2016JA023461
dc.identifier.citedreferenceDavies, K. ( 1990 ). Ionospheric Radio. London: Peter Peregrinus.
dc.identifier.citedreferenceDeighan, J., Chaffin, M. S., Chaufray, J.‐Y., Stewart, A. I. F., Schneider, N. M., Jain, S. K., et al. ( 2015 ). MAVEN IUVS observation of the hot oxygen corona at Mars. Geophysical Research Letters, 42, 9009 – 9014. https://doi.org/10.1002/2015GL065487
dc.identifier.citedreferenceDong, C. F., Bougher, S. W., Ma, Y. J., Toth, G., Lee, Y., Nagy, A. F., et al. ( 2015 ). Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle and seasonal variations. Journal of Geophysical Research: Space Physics, 120, 7857 – 7872. https://doi.org/10.1002/2015JA020990
dc.identifier.citedreferenceDong, C. F., Bougher, S. W., Ma, Y. J., Toth, G., Nagy, A. F., & Najib, D. ( 2014 ). Solar wind interaction with Mars upper atmosphere: Results from the one‐way coupling between the multi‐fluid MHD model and the M‐TGCM model. Geophysical Research Letters, 41, 2708 – 2715. https://doi.org/10.1002/2014GL059515
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.