Movement and habitat use of headstarted Blanding’s turtles in Michigan
dc.contributor.author | Starking‐szymanski, Melissa D. | |
dc.contributor.author | Yoder‐nowak, Teresa | |
dc.contributor.author | Rybarczyk, Greg | |
dc.contributor.author | Dawson, Heather A. | |
dc.date.accessioned | 2018-09-04T20:09:03Z | |
dc.date.available | 2019-11-01T15:10:32Z | en |
dc.date.issued | 2018-09 | |
dc.identifier.citation | Starking‐szymanski, Melissa D. ; Yoder‐nowak, Teresa ; Rybarczyk, Greg; Dawson, Heather A. (2018). "Movement and habitat use of headstarted Blanding’s turtles in Michigan." The Journal of Wildlife Management 82(7): 1516-1527. | |
dc.identifier.issn | 0022-541X | |
dc.identifier.issn | 1937-2817 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/145553 | |
dc.description.abstract | Captive breeding or headstarting is a management option to increase population numbers in threatened and endangered animals. The success of these programs depends on increasing population numbers while maintaining fitness within populations that contain some captiveâ reared individuals. As part of an ongoing conservation project with Shiawassee National Wildlife Refuge (SNWR) in Saginaw, Michigan, USA, the Detroit Zoological Society (DZS) headstarted Blanding’s turtles (Emydoidea blandingii) to 18 months of age. To determine survival, movements, and habitat use of these headstarted Blanding’s turtles, we externally attached radioâ transmitters to 24 turtles and released them at 4 sites in release groups of 6 along a transect in a wetland within SNWR during June 2014. We located turtles weekly during the active season (Mayâ Sep) and every 2 weeks during the inactive season (Octâ Apr) for 18 months, starting immediately after release and ending November 2015. We calculated straightâ line distances between release sites and home range centers over the study period. We examined habitat use of the turtles in relation to habitat availability. To predict movement of headstarted Blanding’s turtles away from release sites, we used geographically weighted regression (GWR) with measured habitat factors and release sites as independent variables. There were differences in home range sizes across release groups but not between years. Headstarted juvenile Blanding’s turtles in this study have home range sizes similar to those measured in other studies for wildâ hatched juveniles but smaller home ranges than those measured for wildâ hatched adults. Our study showed that headstarted Blanding’s turtles used habitats with muskrat (Ondatra zibethica) dens and cattails (Typha spp.) more than proportionally available, and used open water, willows (Salix spp.), and lowland forest less than proportionally available. The GWR model was able to predict habitat characteristics (water depth and temperature, duckweed [Lemna minor], cattails, muskrat dens and fields, buttonbush [Cephalanthus occidentalis]) that influenced the movement of turtles away from the release sites. The habitat coefficient’s influence on movement varied in relation to the current location of the turtle and as habitat characteristics increased or decreased. Turtle distance from release sites decreased as water depth, water temperature, and duckweed increased, and increased as cattails, muskrat dens and fields, and buttonbush increased. Habitat in the small spatial extent at release sites may affect movement of headstarted Blanding’s turtles. Furthermore, this study uses novel methodologies for assessing headstart programs that can aid future conservation and management efforts by providing information on habitat use and movement patterns of headstarted Blanding’s turtles after release. © 2018 The Wildlife Society.We aimed to determine survival, movements, habitat use in relation to availability, and impact of release sites on 18â monthâ old headstarted Blanding’s turtles by releasing them at 4 different sites in Shiawassee National Wildlife Refuge. We showed high survival of the headstarted Blanding’s turtles, reported differences in home range size across release groups, and used geographically weighted regression to explain how turtle distance from release sites varies by measured habitat characteristics; we concluded that habitat characteristics in the small spatial extent at release sites affect movement and space use of headstarted Blanding’s turtles. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Guilford Press | |
dc.subject.other | space use | |
dc.subject.other | Blanding’s turtle | |
dc.subject.other | Emydoidea blandingii | |
dc.subject.other | geographically weighted regression | |
dc.subject.other | habitat analysis | |
dc.subject.other | headstarting | |
dc.subject.other | home range | |
dc.subject.other | national wildlife refuge | |
dc.subject.other | turtle | |
dc.title | Movement and habitat use of headstarted Blanding’s turtles in Michigan | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Natural Resources and Environment | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/145553/1/jwmg21530.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/145553/2/jwmg21530_am.pdf | |
dc.identifier.doi | 10.1002/jwmg.21530 | |
dc.identifier.source | The Journal of Wildlife Management | |
dc.identifier.citedreference | Millar, C. S., and G. Blouinâ Demers. 2012. Habitat suitability modelling for species at risk is sensitive to algorithm and scale: a case study of Blanding’s turtle, Emydoidea blandingii, in Ontario, Canada. Journal for Nature Conservation 20: 18 â 29. | |
dc.identifier.citedreference | Lüdecke D. 2018. sjstats: statistical functions for regression models. R package version 0.14.1. https://CRAN.R-project.org/package=sjstats. Accessed 6 Feb 2018. | |
dc.identifier.citedreference | Maktav, D., F. Sunar, D. Yalin, and E. Aslan. 2000. Monitoring loggerhead sea turtle ( Caretta caretta ) nests in turkey using GIS. Coastal Management 28: 123 â 132. | |
dc.identifier.citedreference | McNew, L. B., A. J. Gregory, and B. K. Sandercock. 2013. Spatial heterogeneity in habitat selection: nest site selection by greater prairieâ chickens. Journal of Wildlife Management 77: 791 â 801. | |
dc.identifier.citedreference | Mignet, F., T. Gendre, D. Reudet, F. Malgoire, M. Cheylan, and A. Besnard. 2014. Shortâ term evaluation of the success of a reintroduction program of the European pond turtle: the contribution of spaceâ use modeling. Chelonian Conservation and Biology 13: 72 â 80. | |
dc.identifier.citedreference | Jones, M. T., and P. R. Sievert. 2012. Elevated mortality of hatchling Blanding’s turtles in residential landscapes. Herpetological Conservation and Biology 7: 89 â 94. | |
dc.identifier.citedreference | Millar, C. S., and G. Blouinâ Demers. 2011. Spatial ecology and seasonal activity of Blanding’s turtles ( Emydoidea blandingii ) in Ontario, Canada. Journal of Herpetology 45: 370 â 378. | |
dc.identifier.citedreference | Millspaugh, J. J., and J. M. Marzluff. 2001. Radio tracking and animal populations. Academic Press, San Diego, USA. | |
dc.identifier.citedreference | Mitrus, S. 2008. The headstarting technique is an ineffective method for conservation of the European pond turtleâ elasticity analysis. Ecological Questions 10: 51 â 55. | |
dc.identifier.citedreference | Neu, C. W., C. R. Byers, and J. M. Peek. 1974. A technique for analysis of utilizationâ availability data. Journal of Wildlife Management 38: 541 â 545. | |
dc.identifier.citedreference | Newton, E. J., and T. B. Herman. 2009. Habitat, movements, and behavior of overwintering Blanding’s turtles ( Emydoidea blandingii ) in Nova Scotia. Canadian Journal Of Zoology 87: 299 â 309. | |
dc.identifier.citedreference | Pearl, R., and J. Miner. 1935. Experimental studies on the duration of life. XIV. The comparative mortality of certain lower organisms. Quarterly Review of Biology 10: 60 â 79. | |
dc.identifier.citedreference | Peel, M. C., B. L. Finlayson, and T. A. McMahon. 2007. Updated world map of the Köppenâ Geiger climate classification. Hydrology and Earth System Sciences Discussions 4: 439 â 473. | |
dc.identifier.citedreference | Piepgras, S. A., and J. W. Lang. 2000. Spatial ecology of Blanding’s turtle in central Minnesota. Chelonian Conservation and Biology 3: 589 â 601. | |
dc.identifier.citedreference | Proulx, C. L., G. Fortin, and G. Blouinâ Demers. 2014. Blanding’s turtles ( Emydoidea blandingii ) avoid crossing unpaved and paved roads. Journal of Herpetology 48: 267 â 271. | |
dc.identifier.citedreference | R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. | |
dc.identifier.citedreference | Reading, R. P., B. Miller, and D. Shepherdson. 2013. The value of enrichment to reintroduction success. Zoo Biology 32: 332 â 341. | |
dc.identifier.citedreference | Rosenshein, L., and L. Scott. 2011. Spatial statistics: best practices. ESRI Users Conference 2011, San Diego, California, USA. | |
dc.identifier.citedreference | Row, J. R., and G. Blouinâ Demers. 2006. Kernels are not accurate estimators of homeâ range size for herpetofauna. Copeia 4: 797 â 802. | |
dc.identifier.citedreference | Ruane, S., S. A. Dinkelacker, and J. B. Iverson. 2008. Demographic and reproductive traits of Blanding’s turtles, Emydoidea blandingii, at the western edge of the species’ range. Copeia 4: 771 â 779. | |
dc.identifier.citedreference | Schuler, M., and R. Thiel. 2008. Annual vs. multipleâ year home range sizes of individual Blanding’s turtles, Emydoidea blandingii, in central Wisconsin. Canadian Fieldâ Naturalist 122: 61 â 64. | |
dc.identifier.citedreference | Spencer, D. G., J. Leach, N. M. Fuller, and W. F. Hartwig. 2001. Shiawassee National Wildlife Refuge Comprehensive Conservation Plan. U.S. Fish and Wildlife Service, Washington, D.C., USA. | |
dc.identifier.citedreference | Starkingâ Szymanski, M. D. 2016. Investigation of headstarted Blanding’s turtles ( Emydoidea blandingii ) in Shiawassee National Wildlife Refuge, Saginaw, MI. Thesis, University of Michiganâ Flint, Flint, USA. | |
dc.identifier.citedreference | Vander Haegen, W. M., S. L. Clark, K. M. Perillo, D. P. Anderson, and H. L. Allen. 2009. Survival and causes of mortality of headâ started western pond turtles on Pierce National Wildlife Refuge, Washington. Journal of Wildlife Management 73: 1402 â 1406. | |
dc.identifier.citedreference | World Wildlife Fund. 2016. Living Planet Report 2016. Risk and resilience in a new era. WWF International, Gland, Switzerland. | |
dc.identifier.citedreference | Zhao, F., and N. Park. 2004. Using geographically weighted regression models to estimate annual average daily traffic. Transportation Record: Journal of the Transportation Research Board 1879: 99 â 107. | |
dc.identifier.citedreference | Alldredge, J. R., and J. Griswold. 2006. Design and analysis of resource selection studies for categorical resource variables. Journal of Wildlife Management 70: 337 â 346. | |
dc.identifier.citedreference | Anthonysamy, W. J. B., M. J. Dreslik, and C. A. Phillips. 2013. Disruptive influences of drought on the activity of a freshwater turtle. American Midland Naturalist 169: 322 â 335. | |
dc.identifier.citedreference | Barker, R., and D. J. King. 2012. Blanding’s turtle ( Emydoidea blandingii ) potential habitat mapping using aerial orthophotographic imagery and object based classification. Remote Sensing 4: 194 â 219. | |
dc.identifier.citedreference | Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixedâ effects models using lme4. Journal of Statistical Software 67 ( 1 ): 1 â 48. | |
dc.identifier.citedreference | Beaudry, F., P. G. DeMaynadier, and M. L. Hunter Jr. 2009. Seasonally dynamic habitat use by Spotted ( Clemmys guttata ) and Blanding’s turtles ( Emydoidea blandingii ) in Maine. Journal of Herpetology 43: 636 â 645. | |
dc.identifier.citedreference | Buhlmann, K. A., T. S. B. Akre, J. B. Iverson, D. Karapatakis, R. A. Mittermeier, A. Georges, A. G. J. Rhodin, P. P. Van Dijk, and J. W. Gibbons. 2009. A global analysis of tortoise and freshwater turtle distributions with identification of priority conservation areas. Chelonian Conservation and Biology 8: 116 â 149. | |
dc.identifier.citedreference | Burke, R. L., C. M. Schneider, and M. T. Dolinger, 2005. Cues used by raccoons to find turtle nests: Effects of flags, human scent, and diamondâ backed terrapin sign. Journal of Herpetology 39: 312 â 315. | |
dc.identifier.citedreference | Burt, J., G. Barber, and D. Rigby. 2009. Elementary statistics for geographers (third edition). Guilford Press, New York, New York, USA. | |
dc.identifier.citedreference | Bury, R. B., and D. J. Germano. 2003. Differences in habitat use by Blanding’s turtles, Emydoidea blandingii, and painted turtles, Chysemys picta, in the Nebraska Sandhills. American Midland Naturalist 149: 241 â 244. | |
dc.identifier.citedreference | Byers, C. R., R. K. Steinhorst, and P. Krausman. 1984. Clarification of a technique for analysis of utilizationâ availability data. Journal of Wildlife Management 48: 1050 â 1053. | |
dc.identifier.citedreference | Cagle, F. R. 1939. A system of marking turtles for future identification. Copeia 3: 170 â 173. | |
dc.identifier.citedreference | Charlton, M., and M. S. Fotheringham. 2009. Geographically weighted regression white paper. Science Foundation Ireland, Dublin, Ireland. | |
dc.identifier.citedreference | Cohen, J. E. 1988. Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale, New Jersey, USA. | |
dc.identifier.citedreference | Congdon, J., A. Dunham, and R. Sels. 1993. Delayed sexual maturity and demographics of Blanding turtles (Emydoideaâ blandingii )â implications for conservation and management of longâ lived organisms. Conservation Biology 7: 826 â 833. | |
dc.identifier.citedreference | Congdon, J. D., O. M. Kinney, and R. D. Nagle. 2011. Spatial ecology and coreâ area protection of Blanding’s turtle ( Emydoidea blandingii ). Canadian Journal of Zoology 89: 1098 â 1106. | |
dc.identifier.citedreference | Dormann, C. F., J. M. McPherson, M. B. Araújo, R. Bivand, J. Bolliger, G. Carl, R. G. Davies, A. Hirzel, W. Jetz, W. D. Kissling, I. Kühn, R. Ohlemüller, P. R. Peresâ Neto, B. Reineking, B. Schröder, F. M. Schurr, and R. Wilson. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30: 609 â 628. | |
dc.identifier.citedreference | Edge, C. B., B. D. Steinberg, R. J. Brooks, and J. D. Litzgus. 2010. Habitat selection by Blanding’s turtles ( Emydoidea blandingii ) in a relatively pristine landscape. Ã coscience 17: 90 â 99. | |
dc.identifier.citedreference | Escobar, R. A., E. Besier, and W. K. Hayes. 2010. Evaluating headstarting as a management tool: postâ release success of green iguanas ( Iguana iguana ) in Costa Rica. International Journal of Biodiversity and Conservation 2: 204 â 214. | |
dc.identifier.citedreference | Forsythe, P., B. Flitz, and S. J. Mullin. 2004. Radio telemetry and postâ emergent habitat selection of neonate box turtles (Emydidae: Terrapene carolina ) in Central Illinois. Herpetological Review 35: 33 â 335. | |
dc.identifier.citedreference | Fotheringham, A. 2009. Geographically weighted regression. Pages 243 â 254 in A. S. Fotheringham, and P. A. Rogerson, editors. The SAGE handbook of spatial analysis. SAGE Publications, London, England. | |
dc.identifier.citedreference | Fotheringham, A. S., M. E. Charlton, and C. Brunsdon. 2002. Geographically weighted regression: the analysis of spatially varying relationships. Wiley, London, United Kingdom. | |
dc.identifier.citedreference | Fotheringham, A. S., C. Brunsdon, and M. E. Charlton. 2000. Quantitative geography: perspectives on spatial data analysis. SAGE Publications, London, England. | |
dc.identifier.citedreference | Fotheringham, A. S., C. Brunsdon, and M. E. Charlton. 1998. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environmental Planning A 30: 1905 â 1927. | |
dc.identifier.citedreference | Fortin, G., G. Blouinâ Demers, and Y. Dubois. 2012. Landscape composition weakly affects home range size in Blanding’s turtles ( Emydoidea blandingii ). Ã coscience 19: 191 â 197. | |
dc.identifier.citedreference | Fraser, D. J. 2008. How well can captive breeding programs conserve biodiversity? A review of salmonids. Evolutionary Applications 1: 535 â 586. | |
dc.identifier.citedreference | Getz, W. M., S. Fortmannâ Roe, P. C. Cross, A. J. Lyons, S. J. Ryan, and C. C. Wilmers. 2007. LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS ONE 2: e207. | |
dc.identifier.citedreference | Grgurovic, M., and P. R. Sievert. 2005. Movement patterns of Blanding’s turtles ( Emydoidea blandingii ) in the suburban landscape of eastern Massachusetts. Urban Ecosystems 8: 203 â 213. | |
dc.identifier.citedreference | Gutzke, W. H. N., and G. C. Packard. 1987. The influence of temperature on eggs and hatchlings of Blanding’s turtles, Emydoidea blandingii. Journal of Herpetology 21 ( 2 ): 161 â 163. | |
dc.identifier.citedreference | Hamernick, M. G. 2000. Home ranges and habitat selection of Blanding’s turtles ( Emydoidea blandingii ) at the Weaver Dunes, Minnesota. Final report submitted to the Nongame Wildlife Program, Minnesota Department of Natural Resources, St. Paul, Minnesota, USA. | |
dc.identifier.citedreference | Hartwig, T. S., and E. Kiviat. 2007. Microhabitat association of Blanding’s turtles in natural and constructed wetlands in southeastern New York. Journal of Wildlife Management 71: 576 â 582. | |
dc.identifier.citedreference | Heppell, S. S., L. B. Crowder, and D. T. Crouse. 1996. Models to evaluate headstarting as a management tool for longâ lived turtles. Ecological Applications 6: 556 â 565. | |
dc.identifier.citedreference | Horne, J. S., E. O. Garton, S. M. Krone, and J. S. Lewis. 2007. Analyzing animal movements using Brownian bridges. Ecology 88: 2354 â 2363. | |
dc.identifier.citedreference | Innes, R. J., K. J. Babbitt, and J. J. Kanter. 2008. Home range and movement of Blanding’s turtles ( Emydoidea blandingii ) in New Hampshire. Northeastern Naturalist 15: 431 â 444. | |
dc.identifier.citedreference | Jaeger, C. P., and V. A. Cobb. 2012. Comparative spatial ecologies of female painted turtles ( Chrysemys picta ) and redâ eared sliders ( Trachemys scripta ) at Reelfoot Lake, Tennessee. Chelonian Conservation and Biology 11: 59 â 67. | |
dc.identifier.citedreference | Kasuga, L. M. C. 2007. Small and largeâ scale landscape approaches for conservation of the imperiled Blanding’s turtle, Emys blandingii. Thesis, Iowa State University, Ames, USA. | |
dc.identifier.citedreference | Kimsey, M. J. Jr., J. Moore, and P. McDaniel. 2008. A geographically weighted regression analysis of Douglasâ fir site index in north central Idaho. Forest Science 54: 356 â 366. | |
dc.identifier.citedreference | Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm ? Ecology 74: 1659 â 1673. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.