Show simple item record

Dual role for inositol‐requiring enzyme 1α in promoting the development of hepatocellular carcinoma during diet‐induced obesity in mice

dc.contributor.authorWu, Ying
dc.contributor.authorShan, Bo
dc.contributor.authorDai, Jianli
dc.contributor.authorXia, Zhixiong
dc.contributor.authorCai, Jie
dc.contributor.authorChen, Tianwei
dc.contributor.authorLv, Songya
dc.contributor.authorFeng, Yuxiong
dc.contributor.authorZheng, Ling
dc.contributor.authorWang, Yan
dc.contributor.authorLiu, Jianfeng
dc.contributor.authorFang, Jing
dc.contributor.authorXie, Dong
dc.contributor.authorRui, Liangyou
dc.contributor.authorLiu, Jianmiao
dc.contributor.authorLiu, Yong
dc.date.accessioned2018-09-04T20:09:15Z
dc.date.available2019-09-04T20:15:39Zen
dc.date.issued2018-08
dc.identifier.citationWu, Ying; Shan, Bo; Dai, Jianli; Xia, Zhixiong; Cai, Jie; Chen, Tianwei; Lv, Songya; Feng, Yuxiong; Zheng, Ling; Wang, Yan; Liu, Jianfeng; Fang, Jing; Xie, Dong; Rui, Liangyou; Liu, Jianmiao; Liu, Yong (2018). "Dual role for inositol‐requiring enzyme 1α in promoting the development of hepatocellular carcinoma during diet‐induced obesity in mice." Hepatology 68(2): 533-546.
dc.identifier.issn0270-9139
dc.identifier.issn1527-3350
dc.identifier.urihttps://hdl.handle.net/2027.42/145564
dc.publisherWiley Periodicals, Inc.
dc.titleDual role for inositol‐requiring enzyme 1α in promoting the development of hepatocellular carcinoma during diet‐induced obesity in mice
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145564/1/hep29871-sup-0001-suppinfo.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145564/2/hep29871.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145564/3/hep29871_am.pdf
dc.identifier.doi10.1002/hep.29871
dc.identifier.sourceHepatology
dc.identifier.citedreferenceUrano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000; 287: 664 ‐ 666.
dc.identifier.citedreferenceHetz C, Martinon F, Rodriguez D, Glimcher LH. The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol Rev 2011; 91: 1219 ‐ 1243.
dc.identifier.citedreferenceMao T, Shao M, Qiu Y, Huang J, Zhang Y, Song B, et al. PKA phosphorylation couples hepatic inositol‐requiring enzyme 1alpha to glucagon signaling in glucose metabolism. Proc Natl Acad Sci U S A 2011; 108: 15852 ‐ 15857.
dc.identifier.citedreferenceJiang S, Yan C, Fang QC, Shao ML, Zhang YL, Liu Y, et al. Fibroblast growth factor 21 is regulated by the IRE1alpha‐XBP1 branch of the unfolded protein response and counteracts endoplasmic reticulum stress‐induced hepatic steatosis. J Biol Chem 2014; 289: 29751 ‐ 29765.
dc.identifier.citedreferenceLiu Y, Shao M, Wu Y, Yan C, Jiang S, Liu J, et al. Role for the endoplasmic reticulum stress sensor IRE1alpha in liver regenerative responses. J Hepatol 2015; 62: 590 ‐ 598.
dc.identifier.citedreferenceShao M, Shan B, Liu Y, Deng Y, Yan C, Wu Y, et al. Hepatic IRE1alpha regulates fasting‐induced metabolic adaptive programs through the XBP1s‐PPARalpha axis signalling. Nat Commun 2014; 5: 3528.
dc.identifier.citedreferenceLu M, Lawrence DA, Marsters S, Acosta‐Alvear D, Kimmig P, Mendez AS, et al. Opposing unfolded‐protein‐response signals converge on death receptor 5 to control apoptosis. Science 2014; 345: 98 ‐ 101.
dc.identifier.citedreferenceMaurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci 2014; 39: 245 ‐ 254.
dc.identifier.citedreferenceBright MD, Itzhak DN, Wardell CP, Morgan GJ, Davies FE. Cleavage of BLOC1S1 mRNA by IRE1 Is Sequence Specific, Temporally Separate from XBP1 Splicing, and Dispensable for Cell Viability under Acute Endoplasmic Reticulum Stress. Mol Cell Biol 2015; 35: 2186 ‐ 2202.
dc.identifier.citedreferenceYu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 2014; 14: 736 ‐ 746.
dc.identifier.citedreferenceBard‐Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F, et al. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell 2011; 19: 629 ‐ 639.
dc.identifier.citedreferenceKaneko M, Niinuma Y, Nomura Y. Activation signal of nuclear factor‐kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor‐associated factor 2. Biol Pharm Bull 2003; 26: 931 ‐ 935.
dc.identifier.citedreferenceHu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha‐mediated NF‐kappaB activation and down‐regulation of TRAF2 expression. Mol Cell Biol 2006; 26: 3071 ‐ 3084.
dc.identifier.citedreferenceCalvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006; 130: 1117 ‐ 1128.
dc.identifier.citedreferenceCalle EE, Teras LR, Thun MJ. Obesity and mortality. N Engl J Med 2005; 353: 2197 ‐ 2199.
dc.identifier.citedreferenceTam AB, Mercado EL, Hoffmann A, Niwa M. ER stress activates NF‐kappaB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One 2012; 7: e45078.
dc.identifier.citedreferenceKeestra‐Gounder AM, Byndloss MX, Seyffert N, Young BM, Chavez‐Arroyo A, Tsai AY, Cevallos SA, et al. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 2016; 532: 394 ‐ 397.
dc.identifier.citedreferenceZhang K, Kaufman RJ. From endoplasmic‐reticulum stress to the inflammatory response. Nature 2008; 454: 455 ‐ 462.
dc.identifier.citedreferenceHummasti S, Hotamisligil GS. Endoplasmic reticulum stress and inflammation in obesity and diabetes. Circ Res 2010; 107: 579 ‐ 591.
dc.identifier.citedreferenceLuedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 2014; 147: 765 ‐ 783 e764.
dc.identifier.citedreferenceVucur M, Reisinger F, Gautheron J, Janssen J, Roderburg C, Cardenas DV, et al. RIP3 inhibits inflammatory hepatocarcinogenesis but promotes cholestasis by controlling caspase‐8‐ and JNK‐dependent compensatory cell proliferation. Cell Rep 2013; 4: 776 ‐ 790.
dc.identifier.citedreferenceSo JS, Hur KY, Tarrio M, Ruda V, Frank‐Kamenetsky M, Fitzgerald K, Koteliansky V, et al. Silencing of lipid metabolism genes through IRE1alpha‐mediated mRNA decay lowers plasma lipids in mice. Cell Metab 2012; 16: 487 ‐ 499.
dc.identifier.citedreferenceGreenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446: 153 ‐ 158.
dc.identifier.citedreferenceGuichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al. Integrated analysis of somatic mutations and focal copy‐number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012; 44: 694 ‐ 698.
dc.identifier.citedreferenceSansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, et al. IL‐6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 2007; 117: 3988 ‐ 4002.
dc.identifier.citedreferenceGao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL‐6 production in human lung adenocarcinomas. J Clin Invest 2007; 117: 3846 ‐ 3856.
dc.identifier.citedreferenceBollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, et al. gp130‐mediated Stat3 activation in enterocytes regulates cell survival and cell‐cycle progression during colitis‐associated tumorigenesis. Cancer Cell 2009; 15: 91 ‐ 102.
dc.identifier.citedreferenceGrivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, et al. IL‐6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis‐associated cancer. Cancer Cell 2009; 15: 103 ‐ 113.
dc.identifier.citedreferencePikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich‐Pyest E, et al. NF‐kappaB functions as a tumour promoter in inflammation‐associated cancer. Nature 2004; 431: 461 ‐ 466.
dc.identifier.citedreferenceTorre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87 ‐ 108.
dc.identifier.citedreferenceCalle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 2004; 4: 579 ‐ 591.
dc.identifier.citedreferenceNg M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980‐2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 766 ‐ 781.
dc.identifier.citedreferenceEllulu M, Abed Y, Rahmat A, Ranneh Y, Ali F. Epidemiology of obesity in developing countries: challenges and prevention. Glob Epidemi Obes. 2014; 2.
dc.identifier.citedreferenceEl‐Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132: 2557 ‐ 2576.
dc.identifier.citedreferenceCohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011; 332: 1519 ‐ 1523.
dc.identifier.citedreferenceFont‐Burgada J, Sun B, Karin M. Obesity and Cancer: The Oil that Feeds the Flame. Cell Metab 2016; 23: 48 ‐ 62.
dc.identifier.citedreferencePark EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL‐6 and TNF expression. Cell 2010; 140: 197 ‐ 208.
dc.identifier.citedreferenceNakagawa H, Umemura A, Taniguchi K, Font‐Burgada J, Dhar D, Ogata H, et al. ER stress cooperates with hypernutrition to trigger TNF‐dependent spontaneous HCC development. Cancer Cell 2014; 26: 331 ‐ 343.
dc.identifier.citedreferenceFausto N. Mouse liver tumorigenesis: models, mechanisms, and relevance to human disease. Semin Liver Dis 1999; 19: 243 ‐ 252.
dc.identifier.citedreferenceSakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, et al. Hepatocyte necrosis induced by oxidative stress and IL‐1 alpha release mediate carcinogen‐induced compensatory proliferation and liver tumorigenesis. Cancer Cell 2008; 14: 156 ‐ 165.
dc.identifier.citedreferenceHe G, Yu GY, Temkin V, Ogata H, Kuntzen C, Sakurai T, et al. Hepatocyte IKKbeta/NF‐kappaB inhibits tumor promotion and progression by preventing oxidative stress‐driven STAT3 activation. Cancer Cell 2010; 17: 286 ‐ 297.
dc.identifier.citedreferenceWeisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796 ‐ 1808.
dc.identifier.citedreferenceSakurai T, Maeda S, Chang L, Karin M. Loss of hepatic NF‐kappa B activity enhances chemical hepatocarcinogenesis through sustained c‐Jun N‐terminal kinase 1 activation. Proc Natl Acad Sci U S A 2006; 103: 10544 ‐ 10551.
dc.identifier.citedreferenceWalter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011; 334: 1081 ‐ 1086.
dc.identifier.citedreferenceHetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012; 13: 89 ‐ 102.
dc.identifier.citedreferenceCubillos‐Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer. Cell 2017; 168: 692 ‐ 706.
dc.identifier.citedreferenceWang M, Kaufman RJ. The impact of the endoplasmic reticulum protein‐folding environment on cancer development. Nat Rev Cancer 2014; 14: 581 ‐ 597.
dc.identifier.citedreferenceHotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010; 140: 900 ‐ 917.
dc.identifier.citedreferenceShan B, Wang X, Wu Y, Xu C, Xia Z, Dai J, et al. The metabolic ER stress sensor IRE1alpha suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat Immunol 2017; 18: 519 ‐ 529.
dc.identifier.citedreferenceQiu Y, Shan B, Yang L, Liu Y. Adipose tissue macrophage in immune regulation of metabolism. Sci China Life Sci 2016; 59: 1232 ‐ 1240.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.