Show simple item record

The effect of implantâ abutment junction position on crestal bone loss: A systematic review and metaâ analysis

dc.contributor.authorSaleh, Muhammad H. A.
dc.contributor.authorRavidà, Andrea
dc.contributor.authorSuárez‐lópez Del Amo, Fernando
dc.contributor.authorLin, Guo‐hao
dc.contributor.authorAsa’ad, Farah
dc.contributor.authorWang, Hom‐lay
dc.date.accessioned2018-09-04T20:09:24Z
dc.date.available2019-09-04T20:15:39Zen
dc.date.issued2018-08
dc.identifier.citationSaleh, Muhammad H. A.; Ravidà, Andrea ; Suárez‐lópez Del Amo, Fernando ; Lin, Guo‐hao ; Asa’ad, Farah; Wang, Hom‐lay (2018). "The effect of implantâ abutment junction position on crestal bone loss: A systematic review and metaâ analysis." Clinical Implant Dentistry and Related Research 20(4): 617-633.
dc.identifier.issn1523-0899
dc.identifier.issn1708-8208
dc.identifier.urihttps://hdl.handle.net/2027.42/145571
dc.description.abstractPurposeTo investigate the effect of the apicoâ coronal implant position on early and late crestal bone loss (CBL), in bone and tissue level implants.Materials and methodsElectronic and manual literature searches were conducted for controlled clinical trials reporting on CBL before and after functional loading of implants. Random effects metaâ analyses were applied to analyze the weighted mean difference (WMD) and metaâ regression was conducted to investigate any potential influences of select confounding factors.ResultsFourteen articles were included in the systematic review and 12 were included in the quantitative synthesis. For bone level implants, WMD comparing early CBL in equi and subcrestal placement was 0.15 mm (Pâ =â .18). For analyses of late CBL in bone level implants, equi and subcrestal placement revealed a 0.03 mm WMD (Pâ =â .88). Where in supra and subcrestal placement, WMD was 0.04 mm (Pâ =â .86). The comparison presented considerable heterogeneity between these two arms, where the P value for chiâ square test presented as .006. Finally, for CBL between supra and equicrestal placement, WMD was â 0.64 mm (Pâ <â .0001), favoring the supracrestal group. For tissue level implants, WM of early and late CBL in implants placed equiâ crestally was 0.68â ±â 0.12 mm and 0.69â ±â 0.54 mm, respectively, where for implants placed subâ crestally, the WM of CBL was 1.72â ±â 0.15 mm and 2.26â ±â 0.63 mm, respectively.ConclusionWithin the limitations of this study, it is recommended to place tissue level implants equicrestally, and bone level implants subcrestally.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdental implant
dc.subject.othersystematic
dc.subject.otherclinical study
dc.subject.otherbone remodeling
dc.subject.otherreview
dc.titleThe effect of implantâ abutment junction position on crestal bone loss: A systematic review and metaâ analysis
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145571/1/cid12600-sup-0002-suppinfo2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145571/2/cid12600-sup-0001-suppinfo1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145571/3/cid12600-sup-0003-suppinfo3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145571/4/cid12600_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145571/5/cid12600.pdf
dc.identifier.doi10.1111/cid.12600
dc.identifier.sourceClinical Implant Dentistry and Related Research
dc.identifier.citedreferenceHartman GA, Cochran DL. Initial implant position determines the magnitude of crestal bone remodeling. J Periodontol. 2004 Apr; 75 ( 4 ): 572 â 577.
dc.identifier.citedreferencePellicerâ Chover H, Peñarrochaâ Diago M, Peñarrochaâ Oltra D, Gomarâ Vercher S, Agustínâ Panadero R, Peñarrochaâ Diago M. Impact of crestal and subcrestal implant placement in periâ implant bone: a prospective comparative study. Med Oral Patol Oral Cir Bucal. 2016; 21: e103 â e110.
dc.identifier.citedreferenceCassetta M, Pranno N, Calasso S, Di Mambro A, Giansanti M. Early periâ implant bone loss: a prospective cohort study. Int J Oral Maxillofac Surg. 2015; 44 ( 9 ): 1138 â 1145.
dc.identifier.citedreferenceHermann JS, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants. A histometric evaluation of unloaded nonâ submerged and submerged implants in the canine mandible. J Periodontol. 2000; 71 ( 9 ): 1412 â 1424.
dc.identifier.citedreferenceCanullo L, Fedele GR, Iannello G, Jepsen S. Platform switching and marginal boneâ level alterations: the results of a randomizedâ controlled trial. Clin Oral Implants Res. 2010; 21 ( 1 ): 115 â 121.
dc.identifier.citedreferenceQian J, Wennerberg A, Albrektsson T. Reasons for marginal bone loss around oral implants. Clin Implant Dent Relat Res. 2012; 14 ( 6 ): 792 â 807.
dc.identifier.citedreferenceHänggi MP, Hänggi DC, Schoolfield JD, Meyer J, Cochran DL, Hermann JS. Crestal bone changes around titanium implants. Part I: a retrospective radiographic evaluation in humans comparing two nonâ submerged implant designs with different machined collar lengths. J Periodontol. 2005; 76 ( 5 ): 791 â 802.
dc.identifier.citedreferenceSutter F, Schroeder A, Buser DA. The new concept of ITI hollowâ cylinder and hollowâ screw implants: part 1. Engineering and design. Int J Oral Maxillofac Implants. 1988; 3: 161 â 172.
dc.identifier.citedreferenceHess D, Buser D, Dietschi D, Grossen G, Schönenberger A, Belzer UC. Esthetic singleâ tooth replacement with implants: a team approach. Quintessence Int. 1998; 29 ( 2 ): 77 â 86.
dc.identifier.citedreferenceSu H, Gonzalezâ Martin O, Weisgold A, Lee E. Considerations of implant abutment and crown contour: critical contour and subcritical contour. Int J Periodont Restor Dent. 2010; 30: 335 â 343.
dc.identifier.citedreferenceDoornewaard R, Christiaens V, De Bruyn H, et al. Longâ term effect of surface roughness and patientsâ factors on crestal bone loss at dental implants. A systematic review and metaâ analysis. Clin Implant Dent Relat Res. 2017; 19 ( 2 ): 372 â 399.
dc.identifier.citedreferenceChappuis V, Engel O, Reyes M, Shahim K, Nolte Lâ P, Buser D. Ridge alterations postâ extraction in the esthetic zone. J Dent Res. 2013; 92 ( 12 Suppl ): 195S â 201S.
dc.identifier.citedreferenceKuchler U, Chappuis V, Gruber R, Lang NP, Salvi GE. Immediate implant placement with simultaneous guided bone regeneration in the esthetic zone: 10â year clinical and radiographic outcomes. Clin Oral Implants Res. 2016; 27 ( 2 ): 253 â 257.
dc.identifier.citedreferenceKühl S, Zürcher S, Zitzmann NU, Filippi A, Payer M, Dagassanâ Berndt D. Detection of periâ implant bone defects with different radiographic techniques â a human cadaver study. Clin Oral Implants Res. 2016; 27 ( 5 ): 529 â 534.
dc.identifier.citedreferenceBornstein MM, Alâ Nawas B, Kuchler U, Tahmaseb A. Consensus statements and recommended clinical procedures regarding contemporarysurgical and radiographic techniques in implant dentistry. Int J Oral Maxillofac Implants. 2014; 29 ( Suppl ): 78 â 82.
dc.identifier.citedreferenceNaitoh M, Nabeshima H, Hayashi H, Nakayama T, Kurita K, Ariji E. Postoperative assessment of incisor dental implants using coneâ beam computed tomography. J Oral Implantol. 2010; 36 ( 5 ): 377 â 384.
dc.identifier.citedreferenceBornstein MM, Horner K, Jacobs R. Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research. Periodontol 2000. 2017; 73 ( 1 ): 51 â 72.
dc.identifier.citedreferenceRios HF, Borgnakke WS, Benavides E. The use of coneâ beam computed tomography in management of patients requiring dental implants: an American Academy of Periodontology best evidence review. J Periodontol. 2017; 88 ( 10 ): 946 â 959.
dc.identifier.citedreferenceBarros RR, Degidi M, Novaes AB, Piattelli A, Shibli JA, Iezzi G. Osteocyte density in the periâ implant bone of immediately loaded and submerged dental implants. J Periodontol. 2009 Mar; 80 ( 3 ): 499 â 504.
dc.identifier.citedreferenceFürhauser R, Florescu D, Benesch T, Haas R, Mailath G, Watzek G. Evaluation of soft tissue around singleâ tooth implant crowns: the pink esthetic score. Clin Oral Implants Res. 2005; 16 ( 6 ): 639 â 644.
dc.identifier.citedreferenceBenic GI, Mokti M, Chen CJ, Weber HP, Hämmerle CHF, Gallucci GO. Dimensions of buccal bone and mucosa at immediately placed implants after 7 years: a clinical and cone beam computed tomography study. Clin Oral Implants Res. 2012; 23 ( 5 ): 560 â 566.
dc.identifier.citedreferenceNisapakultorn K, Suphanantachat S, Silkosessak O, Rattanamongkolgul S. Factors affecting soft tissue level around anterior maxillary singleâ tooth implants. Clin Oral Implants Res. 2010; 21 ( 6 ): 662 â 670.
dc.identifier.citedreferenceSuárezâ López Del Amo F, Lin G, Monje A, Galindoâ Moreno P, Wang H. Influence of soft tissue thickness on periâ implant marginal bone loss: a systematic review and metaâ analysis. J Periodontol. 2016; 87 ( 6 ): 690 â 699.
dc.identifier.citedreferenceAkcalı A, Trullenqueâ Eriksson A, Sun C, Petrie A, Nibali L, Donos N. What is the effect of soft tissue thickness on crestal bone loss around dental implants? A systematic review. Clin Oral Implants Res. 2017; 28 ( 9 ): 1046 â 1053.
dc.identifier.citedreferenceAlbrektsson T, Dahlin C, Jemt T, Sennerby L, Turri A, Wennerberg A. Is marginal bone loss around oral implants the result of a provoked foreign body reaction?. Clin Implant Dent Relat Res. 2014; 16 ( 2 ): 155 â 165.
dc.identifier.citedreferenceSpray JR, Black CG, Morris HF, Ochi S. The influence of bone thickness on facial marginal bone response: stage 1 placement through stage 2 uncovering. Ann Periodontol. 2000; 5 ( 1 ): 119 â 128.
dc.identifier.citedreferenceBerglundh T, Lindhe J. Dimension of the periimplant mucosa biological width revisited short communication. J Clin Periodontol. 1996; 23 ( 10 ): 971 â 973.
dc.identifier.citedreferenceLinkevicius T, Puisys A, Steigmann M, Vindasiute E, Linkeviciene L. Influence of vertical soft tissue thickness on crestal bone changes around implants with platform switching: a comparative clinical study. Clin Implant Dent Relat Res. 2015; 17 ( 6 ): 1228 â 1236.
dc.identifier.citedreferenceSchwarz F, Alcoforado G, Nelson K, et al. Impact of implantâ abutment connection, positioning of the machined collar/microgap, and platform switching on crestal bone level changes. Camlog Foundation Consensus Report. Clin Oral Implants Res. 2014; 25 ( 11 ): 1301 â 1303.
dc.identifier.citedreferenceAlbrektsson T, Chrcanovic B, Ã stman PO, Sennerby L. Initial and longâ term crestal bone responses to modern dental implants. Periodontol 2000. 2017; 73 ( 1 ): 41 â 50.
dc.identifier.citedreferenceCardaropoli G, Lekholm U, Wennström JL. Tissue alterations at implantâ supported singleâ tooth replacements: a 1â year prospective clinical study. Clin Oral Implants Res. 2006; 17 ( 2 ): 165 â 171.
dc.identifier.citedreferenceDe Bruyn H, Vandeweghe S, Ruyffelaert C, Cosyn J, Sennerby L. Radiographic evaluation of modern oral implants with emphasis on crestal bone level and relevance to periâ implant health. Periodontol 2000. 2013; 62 ( 1 ): 256 â 270.
dc.identifier.citedreferenceBelser UC, Buser D, Hess D, Schmid B, Bernard JP, Lang NP. Aesthetic implant restorations in partially edentulous patientsâ a critical appraisal. Periodontol 2000. 1998; 17 ( 1 ): 132 â 150.
dc.identifier.citedreferenceBuser D, Dula K, Belser U, Hirt HP, Berthold H. Localized ridge augmentation using guided bone regeneration. 1. Surgical procedure in the maxilla. Int J Periodont Restor Dent. 1993; 13: 29 â 45.
dc.identifier.citedreferenceBuser D, Arx T. Surgical procedures in partially edentulous patients with ITI implants. Clin Oral Implants Res. 2000; 11: 83 â 100.
dc.identifier.citedreferenceAlbrektsson T, Zarb G, Worthington P, Eriksson AR. The longâ term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986; 1: 11 â 25.
dc.identifier.citedreferenceGalindoâ Moreno P, Leónâ Cano A, Ortegaâ Oller I, Monje A, Oâ ²Valle F, Catena A. Marginal bone loss as success criterion in implant dentistry: beyond 2 mm. Clin Oral Implants Res. 2015; 26 ( 4 ): e28 â e34.
dc.identifier.citedreferenceFransson C, Wennström J, Berglundh T. Clinical characteristics at implants with a history of progressive bone loss. Clin Oral Implants Res. 2008; 19 ( 2 ): 142 â 147.
dc.identifier.citedreferenceAlbrektsson T, BrÃ¥nemark Pâ I, Hansson Hâ A, Lindström J. Osseointegrated titanium implants.Requirements for ensuring a long lasting, direct boneâ toâ implant anchorage in man. Acta Orthop Scan. 1981; 52 ( 2 ): 155 â 170.
dc.identifier.citedreferenceRoosâ JansÃ¥ker AM, Renvert H, Lindahl C, Renvert S. Nineâ to fourteenâ year followâ up of implant treatment. Part III: factors associated with periâ implant lesions. J Clin Periodontol. 2006; 33 ( 4 ): 296 â 301.
dc.identifier.citedreferenceTerheyden H, Lang NP, Bierbaum S, Stadlinger B. Osseointegration â communication of cells. Clin Oral Implants Res. 2012; 23 ( 10 ): 1127 â 1135.
dc.identifier.citedreferencevon Wilmowsky C, Moest T, Nkenke E, Stelzle F, Schlegel KA. Implants in bone: part I. A current overview about tissue response, surface modifications and future perspectives. Oral Maxillofac Surg. 2014; 18 ( 3 ): 243 â 257.
dc.identifier.citedreferenceNaert I, Gizani S, van Steenberghe D, et al. Bone behavior around sleeping and non sleeping implants retaining a mandibular hinging overdenture. Clin Oral Implants Res. 1999; 10 ( 2 ): 149 â 154.
dc.identifier.citedreferenceBerglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberg B, Thomsen P. The soft tissue barrier at implants and teeth. Clin Oral Implants Res. 1991; 2 ( 2 ): 81 â 90.
dc.identifier.citedreferenceAtieh MA, Ibrahim HM, Atieh AH. Platform switching for marginal bone preservation around dental implants: a systematic review and metaâ analysis. J Periodontol. 2010; 81 ( 10 ): 1350 â 1366.
dc.identifier.citedreferencePuisys A, Linkevicius T. The influence of mucosal tissue thickening on crestal bone stability around boneâ level implants. A prospective controlled clinical trial. Clin Oral Implants Res. 2015; 26 ( 2 ): 123 â 129.
dc.identifier.citedreferencePetrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest â A threeâ dimensional finiteâ element analysis. Clin Oral Implants Res. 2005; 16 ( 4 ): 486 â 494.
dc.identifier.citedreferenceJung YC, Han CH, Lee KW. A 1â year radiographic evaluation of marginal bone around dental implants. Int J Oral Maxillofac Implant. 1996; 11: 811 â 818.
dc.identifier.citedreferencevan Eekeren P, Tahmaseb A, Wismeijer D. Crestal bone changes around implants with implantâ abutment connections at epicrestal level or above: systematic review and metaâ analysis. Int J Oral Maxillofac Implants. 2016; 31: 119 â 124.
dc.identifier.citedreferenceQuirynen M, van Steenberghe D. Bacterial colonization of the internal part of twoâ stage implants: an in vivo study. Clin Oral Implants Res. 1993; 4 ( 3 ): 158 â 161.
dc.identifier.citedreferenceBroggini N, McManus LM, Hermann JS, et al. Persistent acute inflammation at the implantâ abutment interface. J Dent Res. 2003; 82 ( 3 ): 232 â 237.
dc.identifier.citedreferencePiattelli A, Vrespa G, Petrone G, Iezzi G, Annibali S, Scarano A. Role of the microgap between implant and abutment: a retrospective histologic evaluation in monkeys. J Periodontol. 2003; 74 ( 3 ): 346 â 352.
dc.identifier.citedreferenceBroggini N, McManus LM, Hermann JS, et al. Periâ implant inflammation defined by the implantâ abutment interface. J Dent Res. 2006; 85 ( 5 ): 473 â 478.
dc.identifier.citedreferenceBarros RRM, Novaes AB, Muglia VA, Iezzi G, Piattelli A. Influence of interimplant distances and placement depth on periâ implant bone remodeling of adjacent and immediately loaded Morse cone connection implants: a histomorphometric study in dogs. Clin Oral Implants Res. 2010; 21 ( 4 ): 371 â 378.
dc.identifier.citedreferenceDegidi M, Perrotti V, Shibli JA, Novaes AB, Piattelli A, Iezzi G. Equicrestal and subcrestal dental implants: a histologic and histomorphometric evaluation of nine retrieved human implants. J Periodontol. 2011; 82 ( 5 ): 708 â 715.
dc.identifier.citedreferenceAdell R, Lekholm U, Rockler B, BrÃ¥nemark PI. A 15â year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg. 1981; 10 ( 6 ): 387 â 416.
dc.identifier.citedreferenceAlbrektsson T, Jansson T, Lekholm U. Osseointegrated dental implants. Dent Clin North Am. 1986; 30: 151 â 174.
dc.identifier.citedreferenceTodescan FF, Pustiglioni FE, Imbronito AV, Albrektsson T, Gioso M. Influence of the microgap in the periâ implant hard and soft tissues: a histomorphometric study in dogs. Int J Oral Maxillofac Implants. 2002; 17 ( 4 ): 467 â 472.
dc.identifier.citedreferenceNevins M, Nevins ML, Camelo M, Boyesen JL, Kim DM. Human histologic evidence of a connective tissue attachment to a dental implant. Int J Periodont Restor Dent. 2008; 28: 111 â 121.
dc.identifier.citedreferenceAlâ Nawas B, Kämmerer PW, Morbach T, Ladwein C, Wegener J, Wagner W. Tenâ year retrospective followâ up study of the TiOblast TM dental implant. Clin Implant Dent Relat Res. 2012; 14 ( 1 ): 127 â 134.
dc.identifier.citedreferenceFernándezâ Formoso N, Rilo B, Mora MJ, Martínezâ Silva I, Díazâ Afonso AM. Radiographic evaluation of marginal bone maintenance around tissue level implant and bone level implant: a randomised controlled trial. A 1â year followâ up. J Oral Rehabil. 2012; 39 ( 11 ): 830 â 837.
dc.identifier.citedreferenceHermann JS, Buser D, Schenk RK, Schoolfield JD, Cochran DL. Biologic Width around oneâ and twoâ piece titanium implants. Clin Oral Implants Res. 2001; 12: 559 â 571.
dc.identifier.citedreferenceSchwarz F, Hegewald A, Becker J. Impact of implantâ abutment connection and positioning of the machined collar/microgap on crestal bone level changes: a systematic review. Clin Oral Implants Res. 2014; 25 ( 4 ): 417 â 425.
dc.identifier.citedreferenceStone PW. Popping the (PICO) question in research and evidenceâ based practice. Appl Nurs Res. 2002; 15 ( 3 ): 197 â 198.
dc.identifier.citedreferenceShamseer L, Moher D, Clarke M, PRISMAâ P Group, et al. Preferred reporting items for systematic review and metaâ analysis protocols (PRISMAâ P) 2015: elaboration and explanation. BMJ. 2015; 4 ( 1 ); g7647.
dc.identifier.citedreferenceMoher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and metaâ analyses: the PRISMA statement. Ann Intern Med. 2009; 151: 264 â 269.
dc.identifier.citedreferenceShea BJ, Hamel C, Wells GA, et al. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. J Clin Epidemiol. 2009; 62 ( 10 ): 1013 â 1020.
dc.identifier.citedreferenceShea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or nonâ randomised studies of healthcare interventions, or both. Bmj. 2017; 358: j4008.
dc.identifier.citedreferenceBerglundh T, Stavropoulos A. Preclinical in vivo research in implant dentistry. Consensus of the eighth European workshop on periodontology. J Clin Periodontol. 2012; 39: 1 â 5.
dc.identifier.citedreferenceTonetti M, Palmer R. Clinical research in implant dentistry: study design, reporting and outcome measurements: consensus report of Working Group 2 of the VIII European Workshop on Periodontology. J Clin Periodontol. 2012; 39: 73 â 80.
dc.identifier.citedreferenceSchulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Bmj. 2010; 340: c332.
dc.identifier.citedreferenceHiggins JPT, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Bmj. 2011; 343 ( 2 ): d5928.
dc.identifier.citedreferenceLinkevicius T, Apse P, Grybauskas S, Puisys A. The influence of soft tissue thickness on crestal bone changes around implants: a 1â year prospective controlled clinical trial. Int J Oral Maxillofac Implants. 2009; 24: 712 â 719.
dc.identifier.citedreferenceKoutouzis T, Neiva R, Nair M, Nonhoff J, Lundgren T. Cone beam computed tomographic evaluation of implants with platformâ switched morse taper connection with the implantâ abutment interface at different levels in relation to the alveolar crest. Int J Oral Maxillofac Implants. 2014; 29 ( 5 ): 1157 â 1163.
dc.identifier.citedreferenceKütan E, Bolukbasi N, Yildirimâ Ondur E, Ozdemir T. Clinical and radiographic evaluation of marginal bone changes around platformâ switching implants placed in crestal or subcrestal positions: a randomized controlled clinical trial. Clin Implant Dent Relat Res. 2015; 17 Suppl 2: e364 â e375.
dc.identifier.citedreferenceAl Amri MD, Alâ Johany SS, Al Baker AM, Al Rifaiy MQ, Abduljabbar TS, Alâ Kheraif AA. Soft tissue changes and crestal bone loss around platformâ switched implants placed at crestal and subcrestal levels: 36â month results from a prospective splitâ mouth clinical trial. Clin Oral Implants Res. 2016; 28: 1342 â 1347.
dc.identifier.citedreferencede Siqueira RAC, Fontão FNGK, Sartori IA, de M, et al. Effect of different implant placement depths on crestal bone levels and soft tissue behavior: a randomized clinical trial. Clin Oral Implants Res. 2016; 28: 1227 â 1233.
dc.identifier.citedreferencePalaska I, Tsaousoglou P, Vouros I, Konstantinidis A, Menexes G. Influence of placement depth and abutment connection pattern on bone remodeling around 1â stage implants: a prospective randomized controlled clinical trial. Clin Oral Implants Res. 2016; 27 ( 2 ): e47 â e56.
dc.identifier.citedreferenceGualini F, Salina S, Rigotti F, Mazzarini C, Longhin D, Grigoletto M. Subcrestal placement of dental implants with an internal conical connection of 0.5 mm versus 1.5 mm: outcome of a multicentre randomised controlled trial 1 year after loading. Eur J Oral Implantol. 2017; 10: 73 â 82.
dc.identifier.citedreferenceHämmerle CHF, Brägger U, Bürgin W, Lang NP. The effect of subcrestal placement of the polished surface of ITI® implants on marginal soft and hard tissues. Clin Oral Implants Res. 1996; 7 ( 2 ): 111 â 119.
dc.identifier.citedreferenceVeis A, Parissis N, Tsirlis A, Papadeli C, Marinis G, Zogakis A. Evaluation of periâ implant marginal bone loss using modified abutment connections at various crestal level placements. Int J Periodont Restor Dent. 2010; 30: 609 â 617.
dc.identifier.citedreferenceNagarajan B, Murthy V, Livingstone D, Surendra MP, Jayaraman S. Evaluation of crestal bone loss around implants placed at equicrestal and subcrestal levels before loading: a prospective clinical study. J Clin Diagn Res. 2015; 9: 47 â 50.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.