Show simple item record

Observations and Modeling of the Mars Low‐Altitude Ionospheric Response to the 10 September 2017 X‐Class Solar Flare

dc.contributor.authorXu, Shaosui
dc.contributor.authorThiemann, Ed
dc.contributor.authorMitchell, David
dc.contributor.authorEparvier, Frank
dc.contributor.authorPawlowski, David
dc.contributor.authorBenna, Mehdi
dc.contributor.authorAndersson, Laila
dc.contributor.authorLiemohn, Michael W.
dc.contributor.authorBougher, Stephen
dc.contributor.authorMazelle, Christian
dc.date.accessioned2018-09-04T20:09:30Z
dc.date.available2019-09-04T20:15:39Zen
dc.date.issued2018-08-16
dc.identifier.citationXu, Shaosui; Thiemann, Ed; Mitchell, David; Eparvier, Frank; Pawlowski, David; Benna, Mehdi; Andersson, Laila; Liemohn, Michael W.; Bougher, Stephen; Mazelle, Christian (2018). "Observations and Modeling of the Mars Low‐Altitude Ionospheric Response to the 10 September 2017 X‐Class Solar Flare." Geophysical Research Letters 45(15): 7382-7390.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/145576
dc.description.abstractSolar extreme ultraviolet and X‐ray photons are the main sources of ionization in the Martian ionosphere and can be enhanced significantly during a solar flare. On 10 September 2017, the Mars Atmosphere and Volatile EvolutioN orbiter observed an X8.2 solar flare, the largest it has encountered to date. Here we investigate the ionospheric response before, during, and after this event with the SuperThermal Electron Transport model. We find good agreement between modeled and measured photoelectron spectra. In addition, the high photoelectron fluxes during the flare provide adequate statistics to allow us to clearly and repeatedly identify the carbon Auger peak in the ionospheric photoelectron energy spectra at Mars for the first time. By applying photochemical equilibrium, O2+ and CO2+ densities are obtained and compared with Mars Atmosphere and Volatile EvolutioN observations. The variations in ion densities during this event due to the solar irradiance enhancement and the neutral atmosphere expansion are discussed.Plain Language SummarySolar extreme ultraviolet and X‐ray photons are the main source of ionization in the Martian ionosphere, photoionizing the neutral particles and producing photoelectrons and ions. These short‐wavelength photon fluxes can be enhanced by a factor of a few to orders of magnitudes during a solar flare (the result of the rapid conversion of magnetic energy to kinetic energy in the solar corona). On 10 September 2017, the Mars Atmosphere and Volatile EvolutioN mission encountered the largest solar flare (X8.2) to date. The comprehensive measurements from Mars Atmosphere and Volatile EvolutioN provide us with an opportunity to evaluate the ionospheric response to this flare event in detail with models. In particular, we investigate the photoelectron flux and ion density response to the flare with an electron transport model. The modeled and measured photoelectron fluxes are in a good agreement. Ion density enhancement at a fixed altitude is from tens of percent to 1500% due to a combination of intensified solar photon fluxes and the heated and then expanded neutral atmosphere during this flare event.Key PointsThe modeled and measured photoelectron spectra are in good agreement during an X8.2 solar flare eventThe carbon Auger peak is clearly and repeatedly identified in electron energy spectra of the Martian ionosphere for the first timeThe ion density enhancement due to the flare at a fixed altitude is from tens to 1,500%
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othercarbon Auger electrons
dc.subject.otherionospheric response
dc.subject.otherMars
dc.subject.otherphotoelectrons
dc.subject.otherion densities
dc.subject.othersolar flare
dc.titleObservations and Modeling of the Mars Low‐Altitude Ionospheric Response to the 10 September 2017 X‐Class Solar Flare
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145576/1/grl57692.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145576/2/grl57692_am.pdf
dc.identifier.doi10.1029/2018GL078524
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceMitchell, D., Lin, R., Reme, H., Crider, D., Cloutier, P., Connerney, J., et al. ( 2000 ). Oxygen Auger electrons observed in Mars’ ionosphere. Geophysical Research Letters, 27 ( 13 ), 1871 – 1874.
dc.identifier.citedreferenceFrahm, R., Sharber, J., Winningham, J., Wurz, P., Liemohn, M., Kallio, E., et al. ( 2006 ). Locations of atmospheric photoelectron energy peaks within the Mars environment. Space Science Reviews, 126 ( 1‐4 ), 389 – 402.
dc.identifier.citedreferenceFrahm, R., Winningham, J., Sharber, J., Scherrer, J., Jeffers, S., Coates, A., et al. ( 2006 ). Carbon dioxide photoelectron energy peaks at Mars. Icarus, 182 ( 2 ), 371 – 382.
dc.identifier.citedreferenceGurnett, D. A., Kirchner, D. L., Huff, R. L., Morgan, D. D., Persoon, A. M., Averkamp, T. F., et al. ( 2005 ). Radar soundings of the ionosphere of Mars. Science, 310, 1929 – 1933. https://doi.org/10.1126/science.1121868
dc.identifier.citedreferenceHaider, S. A., Abdu, M. A., Batista, I. S., Sobral, J. H., Kallio, E., Maguire, W. C., & Verigin, M. I. ( 2009 ). On the responses to solar X‐ray flare and coronal mass ejection in the ionospheres of Mars and Earth. Geophysical Research Letters, 36, L13104. https://doi.org/10.1029/2009GL038694
dc.identifier.citedreferenceHaider, S., Batista, I., Abdu, M., Santos, A., Shah, S. Y., & Thirupathaiah, P. ( 2016 ). Flare X‐ray photochemistry of the E region ionosphere of Mars. Journal of Geophysical Research: Space Physics, 121, 6870 – 6888. https://doi.org/10.1002/2016JA022435
dc.identifier.citedreferenceHaider, S., McKenna‐Lawlor, S., Fry, C., Jain, R., & Joshipura, K. ( 2012 ). Effects of solar X‐ray flares in the E region ionosphere of Mars first model results. Journal of Geophysical Research, 117, A05326. https://doi.org/10.1029/2011JA017436
dc.identifier.citedreferenceKhazanov, G., & Liemohn, M. ( 1995 ). Nonsteady state ionosphere‐plasmasphere coupling of superthermal electrons. Journal of Geophysical Research, 100 ( A6 ), 9669 – 9681.
dc.identifier.citedreferenceLiemohn, M. W., Mitchell, D. L., Nagy, A. F., Fox, J. L., Reimer, T. W., & Ma, Y. ( 2003 ). Comparisons of electron fluxes measured in the crustal fields at Mars by the MGS magnetometer/electron reflectometer instrument with a B field–dependent transport code. Journal of Geophysical Research, 108 ( E12 ), 5134.
dc.identifier.citedreferenceLollo, A., Withers, P., Fallows, K., Girazian, Z., Matta, M., & Chamberlin, P. C. ( 2012 ). Numerical simulations of the ionosphere of Mars during a solar flare. Journal of Geophysical Research, 117, A05314. https://doi.org/10.1029/2011JA017399
dc.identifier.citedreferenceMahaffy, P. R., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., et al. ( 2015 ). The Neutral Gas and Ion Mass Spectrometer on the Mars atmosphere and volatile evolution mission. Space Science Reviews, 195 ( 1‐4 ), 49 – 73.
dc.identifier.citedreferenceMahajan, K., Lodhi, N. K., & Singh, S. ( 2009 ). Ionospheric effects of solar flares at Mars. Geophysical Research Letters, 36, L15207. https://doi.org/10.1029/2009GL039454
dc.identifier.citedreferenceMendillo, M., Lollo, A., Withers, P., Matta, M., Pätzold, M., & Tellmann, S. ( 2011 ). Modeling Mars’ ionosphere with constraints from same‐day observations by Mars Global Surveyor and Mars Express. Journal of Geophysical Research, 116, A11303. https://doi.org/10.1029/2011JA016865
dc.identifier.citedreferenceMendillo, M., Withers, P., Hinson, D., Rishbeth, H., & Reinisch, B. ( 2006 ). Effects of solar flares on the ionosphere of Mars. Science, 311 ( 5764 ), 1135 – 1138.
dc.identifier.citedreferenceMitchell, D., Mazelle, C., Sauvaud, J.‐A., Thocaven, J.‐J., Rouzaud, J., Fedorov, A., et al. ( 2016 ). The MAVEN solar wind electron analyzer. Space Science Reviews, 200 ( 1‐4 ), 495 – 528.
dc.identifier.citedreferenceNielsen, E., Zou, H., Gurnett, D., Kirchner, D., Morgan, D., Huff, R., et al. ( 2007 ). Observations of vertical reflections from the topside Martian ionosphere. In The Mars Plasma Environment (pp. 373–388). New York, NY: Springer.
dc.identifier.citedreferencePeterson, W., Thiemann, E., Eparvier, F. G., Andersson, L., Fowler, C., Larson, D., et al. ( 2016 ). Photoelectrons and solar ionizing radiation at Mars: Predictions versus MAVEN observations. Journal of Geophysical Research: Space Physics, 121, 8859 – 8870. https://doi.org/10.1002/2016JA022677
dc.identifier.citedreferencePeterson, W., Woods, T., Fontenla, J., Richards, P., Chamberlin, P., Solomon, S., et al. ( 2012 ). Solar EUV and XUV energy input to thermosphere on solar rotation time scales derived from photoelectron observations. Journal of Geophysical Research, 117, A05320. https://doi.org/10.1029/2011JA017382
dc.identifier.citedreferenceQian, L., Burns, A. G., Chamberlin, P. C., & Solomon, S. C. ( 2011 ). Variability of thermosphere and ionosphere responses to solar flares. Journal of Geophysical Research, 116, A10309. https://doi.org/10.1029/2011JA016777
dc.identifier.citedreferenceSakai, S., Rahmati, A., Mitchell, D. L., Cravens, T. E., Bougher, S. W., Mazelle, C., et al. ( 2015 ). Model insights into energetic photoelectrons measured at Mars by MAVEN. Geophysical Research Letters, 42, 8894 – 8900. https://doi.org/10.1002/2015GL065169
dc.identifier.citedreferenceSchunk, R., & Nagy, A. ( 2009 ). Ionospheres. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceThiemann, E. M. B., Andersson, L., Lillis, R., Withers, P., Xu, S., Elrod, M., et al. ( 2018 ). The Mars topside ionosphere response to the X8.2 solar flare of 10 September 2017. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL077730
dc.identifier.citedreferenceThiemann, E. M. B., Eparvier, F. G., Andersson, L. A., Fowler, C. M., Peterson, W. K., Mahaffy, P. R., et al. ( 2015 ). Neutral density response to solar flares at Mars. Geophysical Research Letters, 42, 8986 – 8992. https://doi.org/10.1002/2015GL066334
dc.identifier.citedreferenceWithers, P. ( 2009 ). A review of observed variability in the dayside ionosphere of Mars. Advances in Space Research, 44, 277 – 307. https://doi.org/10.1016/j.asr.2009.04.027
dc.identifier.citedreferenceXu, S., & Liemohn, M. W. ( 2015 ). Superthermal electron transport model for Mars. Earth and Space Science, 2, 47 – 64. https://doi.org/10.1002/2014EA000043
dc.identifier.citedreferenceXu, S., Liemohn, M., Bougher, S., & Mitchell, D. ( 2015 ). Enhanced carbon dioxide causing the dust storm‐related increase in high‐altitude photoelectron fluxes at Mars. Geophysical Research Letters, 42, 9702 – 9710. https://doi.org/10.1002/2015GL066043
dc.identifier.citedreferenceXu, S., Liemohn, M., Bougher, S., & Mitchell, D. ( 2016 ). Martian high‐altitude photoelectrons independent of solar zenith angle. Journal of Geophysical Research: Space Physics, 121, 3767 – 3780. https://doi.org/10.1002/2015JA022149
dc.identifier.citedreferenceXu, S., Liemohn, M. W., Peterson, W., Fontenla, J., & Chamberlin, P. ( 2015 ). Comparison of different solar irradiance models for the superthermal electron transport model for Mars. Planetary and Space Science, 119, 62 – 68.
dc.identifier.citedreferenceXu, S., Mitchell, D., Liemohn, M., Dong, C., Bougher, S., Fillingim, M., et al. ( 2016 ). Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophysical Research Letters, 43, 8876 – 8884. https://doi.org/10.1002/2016GL070527
dc.identifier.citedreferenceXu, S., Mitchell, D., Liemohn, M., Fang, X., Ma, Y., Luhmann, J., et al. ( 2017 ). Martian low‐altitude magnetic topology deduced from MAVEN/SWEA observations. Journal of Geophysical Research: Space Physics, 122, 1831 – 1852. https://doi.org/10.1002/2016JA023467
dc.identifier.citedreferenceAndersson, L., Ergun, R., Delory, G., Eriksson, A., Westfall, J., Reed, H., et al. ( 2015 ). The Langmuir Probe and Waves (LPW) instrument for MAVEN. Space Science Reviews, 195 ( 1‐4 ), 173 – 198.
dc.identifier.citedreferenceBougher, S. W., Brain, D. A., Fox, J. L., Francisco, G.‐G., Simon‐Wedlund, C., & Withers, P. G. ( 2017 ). Upper neutral atmosphere and ionosphere. In R.   Haberle, R.   Clancy, F.   Forget, M.   Smith, & R.   Zurek (Eds.), The atmosphere and climate of Mars, Cambridge Planetary Science (pp. 433–463). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781139060172.014
dc.identifier.citedreferenceBougher, S. W., Engel, S., Hinson, D. P., & Forbes, J. M. ( 2001 ). Mars global surveyor radio science electron density profiles: Neutral atmosphere implications. Geophysical Research Letters, 28, 3091 – 3094. https://doi.org/10.1029/2001GL012884
dc.identifier.citedreferenceBougher, S., Pawlowski, D., Bell, J., Nelli, S., McDunn, T., Murphy, J., et al. ( 2015 ). Mars Global Ionosphere‐Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. Journal of Geophysical Research: Planets, 120, 311 – 342. https://doi.org/10.1002/2014JE004715
dc.identifier.citedreferenceChapman, S. ( 1931a ). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proceedings of the Physical Society, 43, 26 – 45. https://doi.org/10.1088/0959-5309/43/1/305
dc.identifier.citedreferenceChapman, S. ( 1931b ). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Part II. Grazing incidence. Proceedings of the Physical Society, 43, 483 – 501. https://doi.org/10.1088/0959-5309/43/5/302
dc.identifier.citedreferenceCoates, A. J., Tsang, S., Wellbrock, A., Frahm, R., Winningham, J., Barabash, S., et al. ( 2011 ). Ionospheric photoelectrons: Comparing Venus, Earth, Mars and Titan. Planetary and Space Science, 59, 1019 – 1027.
dc.identifier.citedreferenceCravens, T. E., & Maurellis, A. N. ( 2001 ). X‐ray emission from scattering and fluorescence of solar X‐rays at Venus and Mars. Geophysical Research Letters, 28, 3043 – 3046. https://doi.org/10.1029/2001GL013021
dc.identifier.citedreferenceDennerl, K. ( 2002 ). Discovery of X–rays from Mars with Chandra. Astronomy & Astrophysics, 394 ( 3 ), 1119 – 1128.
dc.identifier.citedreferenceEparvier, F., Chamberlin, P., Woods, T., & Thiemann, E. ( 2015 ). The solar extreme ultraviolet monitor for MAVEN. Space Science Reviews, 195 ( 1–4 ), 293 – 301.
dc.identifier.citedreferenceFallows, K., Withers, P., & Gonzalez, G. ( 2015 ). Response of the Mars ionosphere to solar flares: Analysis of MGS radio occultation data. Journal of Geophysical Research: Space Physics, 120, 9805 – 9825. https://doi.org/10.1002/2015JA021108
dc.identifier.citedreferenceFallows, K., Withers, P., & Matta, M. ( 2015a ). Numerical simulations of the influence of solar zenith angle on properties of the M1 layer of the Mars ionosphere. Journal of Geophysical Research: Space Physics, 120, 6707 – 6721. https://doi.org/10.1002/2014JA020947
dc.identifier.citedreferenceFallows, K., Withers, P., & Matta, M. ( 2015b ). An observational study of the influence of solar zenith angle on properties of the M1 layer of the Mars ionosphere. Journal of Geophysical Research: Space Physics, 120, 1299 – 1310. https://doi.org/10.1002/2014JA020750
dc.identifier.citedreferenceFillingim, M., Peticolas, L., Lillis, R., Brain, D., Halekas, J., Lummerzheim, D., & Bougher, S. ( 2010 ). Localized ionization patches in the nighttime ionosphere of Mars and their electrodynamic consequences. Icarus, 206 ( 1 ), 112 – 119.
dc.identifier.citedreferenceFox, J. L. ( 1991 ). Cross sections and reaction rates of relevance to aeronomy. Reviews of Geophysics, 29, 1110 – 1131.
dc.identifier.citedreferenceFox, J. L. ( 2004a ). Advances in the aeronomy of Venus and Mars. Advances in Space Research, 33 ( 2 ), 132 – 139.
dc.identifier.citedreferenceFox, J. L. ( 2004b ). Response of the Martian thermosphere/ionosphere to enhanced fluxes of solar soft X‐rays. Journal of Geophysical Research, 109, A11310. https://doi.org/10.1029/2004JA010380
dc.identifier.citedreferenceFox, J. L., & Dalgarno, A. ( 1979 ). Ionization, luminosity, and heating of the upper atmosphere of Mars. Journal of Geophysical Research (1978–2012), 84 ( A12 ), 7315 – 7333.
dc.identifier.citedreferenceFox, J. L., Galand, M. I., & Johnson, R. E. ( 2008 ). Energy deposition in planetary atmospheres by charged particles and solar photons. Space Science Reviews, 139 ( 1‐4 ), 3 – 62.
dc.identifier.citedreferenceFox, J. L., & Sung, K. ( 2001 ). Solar activity variations of the Venus thermosphere/ionosphere. Journal of Geophysical Research, 106 ( A10 ), 21,305–21,335.
dc.identifier.citedreferenceFrahm, R., Sharber, J., Winningham, J., Link, R., Liemohn, M., Kozyra, J., et al. ( 2010 ). Estimation of the escape of photoelectrons from Mars in 2004 liberated by the ionization of carbon dioxide and atomic oxygen. Icarus, 206 ( 1 ), 50 – 63.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.