The strength of density‐dependent mortality is contingent on climate and seedling size
dc.contributor.author | Song, Xiaoyang | |
dc.contributor.author | Johnson, Daniel J. | |
dc.contributor.author | Cao, Min | |
dc.contributor.author | Umaña, Maria Natalia | |
dc.contributor.author | Deng, Xiaobao | |
dc.contributor.author | Yang, Xiaofei | |
dc.contributor.author | Zhang, Wenfu | |
dc.contributor.author | Yang, Jie | |
dc.date.accessioned | 2018-09-04T20:09:33Z | |
dc.date.available | 2019-09-04T20:15:39Z | en |
dc.date.issued | 2018-07 | |
dc.identifier.citation | Song, Xiaoyang; Johnson, Daniel J.; Cao, Min; Umaña, Maria Natalia ; Deng, Xiaobao; Yang, Xiaofei; Zhang, Wenfu; Yang, Jie (2018). "The strength of density‐dependent mortality is contingent on climate and seedling size." Journal of Vegetation Science 29(4): 662-670. | |
dc.identifier.issn | 1100-9233 | |
dc.identifier.issn | 1654-1103 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/145578 | |
dc.description.abstract | QuestionsDensity‐dependent processes may promote species diversity in plant communities. Here, we tested whether seedling survival was density‐dependent and varied by seedling size, species and climatic factors.LocationTropical rain forest, Xishuangbanna, southwest China.MethodsGeneralized linear mixed‐effects models were used to examine seedling survival (232 tree species) across 9 years of seedling census data from a 20‐ha tropical forest dynamics plot. Our predictor variables were conspecific and heterospecific neighbour density, size of the seedling and annual variation in climatic factors.ResultsWe found significant negative effects of conspecific tree density, but positive effects of heterospecific seedling density on the survival of tree seedlings in this plot. In general, conspecific negative density dependence (CNDD) was observed most frequently for large size classes of seedlings (≥20‐cm high), while heterospecific positive density dependence (HPDD) was similar at all size classes. CNDD for large seedlings was stronger during warm years, and HPDD for large seedlings was stronger during dry years.ConclusionsOur study suggests that the strength of density dependence varied through time, and this strength was influenced by water availability and temperature. Our results highlight the potential for changes in species composition and species co‐existence that could result from increasing temperature‐strengthening CNDD effects and decreasing precipitation strengthening HPDD effects.In this study, we tested the correlation between the strength of density dependence and climatic conditions across 9 years of censuses. We found the strength of density dependence fluctuates and is significantly correlated with temperature and precipitation. Our study highlights the alteration of the strength of density dependence with climate change which will alter community composition in tropical forest. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Princeton University Press | |
dc.subject.other | neighbour effect | |
dc.subject.other | seedling | |
dc.subject.other | temperature | |
dc.subject.other | mixed models | |
dc.subject.other | competition | |
dc.subject.other | density dependence | |
dc.subject.other | Janzen‐Connell hypothesis | |
dc.subject.other | precipitation | |
dc.title | The strength of density‐dependent mortality is contingent on climate and seedling size | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Natural Resources and Environment | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/145578/1/jvs12645.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/145578/2/jvs12645_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/145578/3/jvs12645-sup-0001-AppendixS1.pdf | |
dc.identifier.doi | 10.1111/jvs.12645 | |
dc.identifier.source | Journal of Vegetation Science | |
dc.identifier.citedreference | Peters, H. A. ( 2003 ). Neighbour‐regulated mortality: The influence of positive and negative density dependence on tree populations in species‐rich tropical forests. Ecology Letters, 6, 757 – 765. https://doi.org/10.1046/j.1461-0248.2003.00492.x | |
dc.identifier.citedreference | Gornish, E. S., & Tylianakis, J. M. ( 2013 ). Community shifts under climate change: Mechanisms at multiple scales. American Journal of Botany, 100, 1422 – 1434. https://doi.org/10.3732/ajb.1300046 | |
dc.identifier.citedreference | Harms, K. E., Wright, S. J., Calderon, O., Hernandez, A., & Herre, E. A. ( 2000 ). Pervasive density‐dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493 – 495. https://doi.org/10.1038/35006630 | |
dc.identifier.citedreference | Hersh, M. H., Vilgalys, R., & Clark, J. S. ( 2011 ). Evaluating the impacts of multiple generalist fungal pathogens on temperate tree seedling survival. Ecology, 93, 511 – 520. | |
dc.identifier.citedreference | Janzen, D. H. ( 1970 ). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501 – 528. https://doi.org/10.1086/282687 | |
dc.identifier.citedreference | Jia, X., Dai, X. F., Shen, Z. X., Zhang, J. Y., & Wang, G. X. ( 2011 ). Facilitation can maintain clustered spatial pattern of plant populations during density‐dependent mortality: Insights from a zone‐of‐influence model. Oikos, 120, 472 – 480. https://doi.org/10.1111/j.1600-0706.2010.18674.x | |
dc.identifier.citedreference | Johnson, D. J., Beaulieu, W. T., Bever, J. D., & Clay, K. ( 2012 ). Conspecific negative density dependence and forest diversity. Science, 336, 904 – 907. https://doi.org/10.1126/science.1220269 | |
dc.identifier.citedreference | Johnson, D. J., Bourg, N. A., Howe, R., McShea, W. J., Wolf, A., & Clay, K. ( 2014 ). Conspecific negative density‐dependent mortality and the structure of temperate forests. Ecology, 95, 2493 – 2503. https://doi.org/10.1890/13-2098.1 | |
dc.identifier.citedreference | LaManna, J. A., Mangan, S. A., Alonso, A., Bourg, N. A., Brockelman, W. Y., Bunyavejchewin, S., … Myers, J. A. ( 2017 ). Plant diversity increases with the strength of negative density dependence at the global scale. Science, 356, 1389 – 1392. https://doi.org/10.1126/science.aam5678 | |
dc.identifier.citedreference | LaManna, J. A., Walton, M. L., Turner, B. L., & Myers, J. A. ( 2016 ). Negative density dependence is stronger in resource‐rich environments and diversifies communities when stronger for common but not rare species. Ecology Letters, 19, 657 – 667. https://doi.org/10.1111/ele.12603 | |
dc.identifier.citedreference | Lin, L., Comita, L. S., Zheng, Z., & Cao, M. ( 2012 ). Seasonal differentiation in density‐dependent seedling survival in a tropical rain forest. Journal of Ecology, 100, 905 – 914. https://doi.org/10.1111/j.1365-2745.2012.01964.x | |
dc.identifier.citedreference | Liu, X. B., Liang, M. X., Etienne, R. S., Wang, Y. F., Staehelin, C., & Yu, S. X. ( 2012 ). Experimental evidence for a phylogenetic Janzen‐Connell effect in a subtropical forest. Ecology Letters, 15, 111 – 118. https://doi.org/10.1111/j.1461-0248.2011.01715.x | |
dc.identifier.citedreference | Lu, J., Johnson, D. J., Qiao, X., Lu, Z., Wang, Q., & Jiang, M. ( 2015 ). Density dependence and habitat preference shape seedling survival in a subtropical forest in central China. Journal of Plant Ecology, 8, 568 – 577. | |
dc.identifier.citedreference | Meinzer, F. C., Andrade, J. L., Goldstein, G., Holbrook, N. M., Cavelier, J., & Wright, S. J. ( 1999 ). Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia, 121, 293 – 301. https://doi.org/10.1007/s004420050931 | |
dc.identifier.citedreference | Metz, M. R., Sousa, W. P., & Valencia, R. ( 2010 ). Widespread density‐dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest. Ecology, 91, 3675 – 3685. https://doi.org/10.1890/08-2323.1 | |
dc.identifier.citedreference | Piao, T., Comita, L. S., Jin, G. Z., & Kim, J. H. ( 2013 ). Density dependence across multiple life stages in a temperate old‐growth forest of northeast China. Oecologia, 172, 207 – 217. https://doi.org/10.1007/s00442-012-2481-y | |
dc.identifier.citedreference | Record, S., Kobe, R. K., Vriesendorp, C. F., & Finley, A. O. ( 2016 ). Seedling survival responses to conspecific density, soil nutrients, and irradiance vary with age in a tropical forest. Ecology, 97, 2406 – 2415. https://doi.org/10.1002/ecy.1458 | |
dc.identifier.citedreference | Slik, J. W. F. ( 2004 ). El Nino droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia, 141, 114 – 120. https://doi.org/10.1007/s00442-004-1635-y | |
dc.identifier.citedreference | Slot, M., & Poorter, L. ( 2007 ). Diversity of tropical tree seedling responses to drought. Biotropica, 39, 683 – 690. https://doi.org/10.1111/j.1744-7429.2007.00328.x | |
dc.identifier.citedreference | Spear, E. R., Coley, P. D., & Kursar, T. A. ( 2015 ). Do pathogens limit the distributions of tropical trees across a rainfall gradient? Journal of Ecology, 103, 165 – 174. https://doi.org/10.1111/1365-2745.12339 | |
dc.identifier.citedreference | Stoll, P., & Newberry, D. M. ( 2005 ). Evidence of species‐specific neighborhood effects in the Dipterocarpaceae of a Bornean rain forest. Ecology, 86, 3048 – 3062. https://doi.org/10.1890/04-1540 | |
dc.identifier.citedreference | Swinfield, T., Lewis, O. T., Bagchi, R., & Freckleton, R. P. ( 2012 ). Consequences of changing rainfall for fungal pathogen‐induced mortality in tropical tree seedlings. Ecology and Evolution, 2, 1408 – 1413. https://doi.org/10.1002/ece3.252 | |
dc.identifier.citedreference | Valencia, R., Foster, R. B., Villa, G., Condit, R., Svenning, J. C., Hernandez, C., … Balslev, H. ( 2004 ). Tree species distributions and local habitat variation in the Amazon: Large forest plot in eastern Ecuador. Journal of Ecology, 92, 214 – 229. https://doi.org/10.1111/j.0022-0477.2004.00876.x | |
dc.identifier.citedreference | Valladares, F., Bastias, C. C., Godoy, O., Granda, E., & Escudero, A. ( 2015 ). Species coexistence in a changing world. Frontiers in Plant Science, 6, 866. PMC4604266. | |
dc.identifier.citedreference | Vandermeer, J. H. ( 1972 ). Niche theory. Annual Review of Ecology and Systematics, 3, 107 – 132. https://doi.org/10.1146/annurev.es.03.110172.000543 | |
dc.identifier.citedreference | Wright, J. S. ( 2002 ). Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 130, 1 – 14. https://doi.org/10.1007/s004420100809 | |
dc.identifier.citedreference | Wu, J., Swenson, N. G., Brown, C., Zhang, C., Yang, J., Ci, X. Q., … Lin, L. X. ( 2016 ). How does habitat filtering affect the detection of conspecific and phylogenetic density dependence? Ecology, 97, 1182 – 1193. https://doi.org/10.1890/14-2465.1 | |
dc.identifier.citedreference | Xu, M., Wang, Y., Liu, Y., Zhang, Z., & Yu, S. ( 2015 ). Soil‐borne pathogens restrict the recruitment of a subtropical tree: a distance‐dependent effect Oecologia, 177, 723 – 732. https://doi.org/10.1007/s00442-014-3128-y | |
dc.identifier.citedreference | Yanar, Y., Lipps, P. E., & Deep, I. W. ( 1997 ). Effect of soil saturation duration and soil water content on root rot of maize caused by Pythium arrhenomanes. Plant Disease, 81, 475 – 480. https://doi.org/10.1094/PDIS.1997.81.5.475 | |
dc.identifier.citedreference | Zhang, Y. H., Wang, Y. F., & Yu, S. X. ( 2014 ). Interspecific Neighbor Interactions Promote the Positive Diversity‐Productivity Relationship in Experimental Grassland Communities. PLoS ONE, 9, e111434. https://doi.org/10.1371/journal.pone.0111434 | |
dc.identifier.citedreference | Zhu, Y., Comita, L. S., Hubbell, S. P., & Ma, K. ( 2015 ). Conspecific and phylogenetic density‐dependent survival differs across life stages in a tropical forest. Journal of Ecology, 103, 957 – 966. https://doi.org/10.1111/1365-2745.12414 | |
dc.identifier.citedreference | Bachelot, B., Kobe, R. K., & Vriesendorp, C. ( 2015 ). Negative density‐dependent mortality varies over time in a wet tropical forest, advantaging rare species, common species, or no species. Oecologia, 179, 853 – 861. https://doi.org/10.1007/s00442-015-3402-7 | |
dc.identifier.citedreference | Bagchi, R., Gallery, R. E., Gripenberg, S., Gurr, S. J., Narayan, L., Addis, C. E., … Lewis, O. T. ( 2014 ). Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 506, 85 – 88. https://doi.org/10.1038/nature12911 | |
dc.identifier.citedreference | Bagchi, R., Swinfield, T., Gallery, R. E., Lewis, O. T., Gripenberg, S., Narayan, L., & Freckleton, R. P. ( 2010 ). Testing the Janzen‐Connell mechanism: Pathogens cause overcompensating density dependence in a tropical tree. Ecology Letters, 13, 1262 – 1269. https://doi.org/10.1111/j.1461-0248.2010.01520.x | |
dc.identifier.citedreference | Bai, X. J., Queenborough, S. A., Wang, X. G., Zhang, J., Li, B. H., Yuan, Z. Q., … Hao, Z. Q. ( 2012 ). Effects of local biotic neighbors and habitat heterogeneity on tree and shrub seedling survival in an old‐growth temperate forest. Oecologia, 170, 755 – 765. https://doi.org/10.1007/s00442-012-2348-2 | |
dc.identifier.citedreference | Benitez, M.‐S., Hersh, M. H., Vilgalys, R., & Clark, J. S. ( 2013 ). Pathogen regulation of plant diversity via effective specialization. Trends in Ecology & Evolution, 28, 705 – 711. https://doi.org/10.1016/j.tree.2013.09.005 | |
dc.identifier.citedreference | Bertness, M. D., & Callaway, R. ( 1994 ). Positive interactions in communities. Trends in Ecology & Evolution, 9, 191 – 193. https://doi.org/10.1016/0169-5347(94)90088-4 | |
dc.identifier.citedreference | Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J. S. S. ( 2009 ). Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology & Evolution, 24, 127 – 135. https://doi.org/10.1016/j.tree.2008.10.008 | |
dc.identifier.citedreference | Brenes‐Arguedas, T., Coley, P. D., & Kursar, T. A. ( 2009 ). Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient. Ecology, 90, 1751 – 1761. https://doi.org/10.1890/08-1271.1 | |
dc.identifier.citedreference | Bruno, J. F., Stachowicz, J. J., & Bertness, M. D. ( 2003 ). Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution, 18, 119 – 125. https://doi.org/10.1016/S0169-5347(02)00045-9 | |
dc.identifier.citedreference | Bunker, D. E., & Carson, W. P. ( 2005 ). Drought stress and tropical forest woody seedlings: Effect on community structure and composition. Journal of Ecology, 93, 794 – 806. https://doi.org/10.1111/j.1365-2745.2005.01019.x | |
dc.identifier.citedreference | Callaway, R. M., Brooker, R. W., Choler, P., Kikvidze, Z., Lortie, C. J., Michalet, R., … Cook, B. J. ( 2002 ). Positive interactions among alpine plants increase with stress. Nature, 417, 844 – 848. https://doi.org/10.1038/nature00812 | |
dc.identifier.citedreference | Cao, M., Zou, X. M., Warren, M., & Zhu, H. ( 2006 ). Tropical forests of Xishuangbanna, China. Biotropica, 38, 306 – 309. https://doi.org/10.1111/j.1744-7429.2006.00146.x | |
dc.identifier.citedreference | Clark, D. B., & Clark, D. A. ( 1985 ). Seedling dynamics of a tropical tree – impacts of herbivory and meristem damage. Ecology, 66, 1884 – 1892. https://doi.org/10.2307/2937384 | |
dc.identifier.citedreference | Clay, K., Reinhart, K., Rudgers, J., Tintjer, T., Koslow, J., & Flory, S. L. ( 2008 ). Red Queen Communities. In R. S. Ostfeld, F. Keesing, & V. T. Eviner (Eds.), Infectious disease ecology: The effects of ecosystems on disease and of disease on ecosystems (pp. 145 – 178 ). Princeton, NJ: Princeton University Press. | |
dc.identifier.citedreference | Coley, P. D., & Barone, J. A. ( 1996 ). Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27, 305 – 335. https://doi.org/10.1146/annurev.ecolsys.27.1.305 | |
dc.identifier.citedreference | Comita, L. S., & Engelbrecht, B. M. J. ( 2009 ). Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology, 90, 2755 – 2765. https://doi.org/10.1890/08-1482.1 | |
dc.identifier.citedreference | Comita, L. S., & Hubbell, S. P. ( 2009 ). Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology, 90, 328 – 334. https://doi.org/10.1890/08-0451.1 | |
dc.identifier.citedreference | Comita, L. S., Queenborough, S. A., Murphy, S. J., Eck, J. L., Xu, K. Y., Krishnadas, M., … Zhu, Y. ( 2014 ). Testing predictions of the Janzen‐Connell hypothesis: A meta‐analysis of experimental evidence for distance‐ and density‐dependent seed and seedling survival. Journal of Ecology, 102, 845 – 856. https://doi.org/10.1111/1365-2745.12232 | |
dc.identifier.citedreference | Condit, R. ( 1998 ). Tropical forest census plots: Methods and results from Barro Colorado Island, Panama and a comparison with other plots. Berlin, Germany: Springer Science & Business Media. https://doi.org/10.1007/978-3-662-03664-8 | |
dc.identifier.citedreference | Connell, J. H. ( 1978 ). Diversity in Tropical rain forests and coral reefs – high diversity of trees and corals is maintained only in a non‐equilibrium state. Science, 199, 1302 – 1310. https://doi.org/10.1126/science.199.4335.1302 | |
dc.identifier.citedreference | Dobson, A. ( 2004 ). Population dynamics of pathogens with multiple host species. American Naturalist, 164, S64 – S78. https://doi.org/10.1086/424681 | |
dc.identifier.citedreference | Engelbrecht, B. M., Kursar, T. A., & Tyree, M. T. ( 2005 ). Drought effects on seedling survival in a tropical moist forest. Trees, 19, 312 – 321. https://doi.org/10.1007/s00468-004-0393-0 | |
dc.identifier.citedreference | Fan, Z.‐X., Bräuning, A., Thomas, A., Li, J.‐B., & Cao, K.‐F. ( 2011 ). Spatial and temporal temperature trends on the Yunnan Plateau (Southwest China) during 1961–2004. International Journal of Climatology, 31, 2078 – 2090. https://doi.org/10.1002/joc.2214 | |
dc.identifier.citedreference | Fan, Z.‐X., & Thomas, A. ( 2013 ). Spatiotemporal variability of reference evapotranspiration and its contributing climatic factors in Yunnan Province, SW China, 1961–2004. Climatic Change, 116, 309 – 325. https://doi.org/10.1007/s10584-012-0479-4 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.