Show simple item record

Effects of bone marrow‐derived mesenchymal stromal cells on gene expression in human alveolar type II cells exposed to TNF‐α, IL‐1β, and IFN‐γ

dc.contributor.authorSchwede, Matthew
dc.contributor.authorWilfong, Erin M.
dc.contributor.authorZemans, Rachel L.
dc.contributor.authorLee, Patty J.
dc.contributor.authorSantos, Claudia
dc.contributor.authorFang, Xiaohui
dc.contributor.authorMatthay, Michael A.
dc.date.accessioned2018-09-04T20:09:34Z
dc.date.available2019-09-04T20:15:39Zen
dc.date.issued2018-08
dc.identifier.citationSchwede, Matthew; Wilfong, Erin M.; Zemans, Rachel L.; Lee, Patty J.; Santos, Claudia; Fang, Xiaohui; Matthay, Michael A. (2018). "Effects of bone marrow‐derived mesenchymal stromal cells on gene expression in human alveolar type II cells exposed to TNF‐α, IL‐1β, and IFN‐γ." Physiological Reports (16): n/a-n/a.
dc.identifier.issn2051-817X
dc.identifier.issn2051-817X
dc.identifier.urihttps://hdl.handle.net/2027.42/145579
dc.description.abstractThe acute respiratory distress syndrome (ARDS) is common in critically ill patients and has a high mortality rate. Mesenchymal stromal cells (MSCs) have demonstrated therapeutic potential in animal models of ARDS, and their benefits occur in part through interactions with alveolar type II (ATII) cells. However, the effects that MSCs have on human ATII cells have not been well studied. Using previously published microarray data, we performed genome‐wide differential gene expression analyses of human ATII cells that were (1) unstimulated, (2) exposed to proinflammatory cytokines (CytoMix), or (3) exposed to proinflammatory cytokines plus MSCs. Findings were validated by qPCR. Alveolar type II cells differentially expressed hundreds of genes when exposed either to proinflammatory cytokines or to proinflammatory cytokines plus MSCs. Stimulation with proinflammatory cytokines increased expression of inflammatory genes and downregulated genes related to surfactant function and alveolar fluid clearance. Some of these changes, including expression of some cytokines and genes related to surfactant, were reversed by exposure to MSCs. In addition, MSCs induced upregulation of other potentially beneficial genes, such as those related to extracellular matrix remodeling. We confirmed several of these gene expression changes by qPCR. Thus, ATII cells downregulate genes associated with surfactant and alveolar fluid clearance when exposed to inflammatory cytokines, and mesenchymal stromal cells partially reverse many of these gene expression changes.Mesenchymal stromal cells (MSCs) have therapeutic potential for the acute respiratory distress syndrome, and their benefits occur in part through interactions with alveolar type II (ATII) cells. We performed genome‐wide differential gene expression analyses of human ATII cells that were (1) unstimulated, (2) exposed to proinflammatory cytokines (CytoMix), or (3) exposed to CytoMix plus MSCs. Stimulation with CytoMix increased expression of inflammatory genes and downregulated genes related to surfactant function and alveolar fluid clearance, and several gene expression changes were reversed by exposure to MSCs.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAcute respiratory distress syndrome
dc.subject.othergene expression profiling
dc.subject.othercytokines
dc.subject.otheralveolar epithelial cells
dc.subject.othermesenchymal stromal cells
dc.titleEffects of bone marrow‐derived mesenchymal stromal cells on gene expression in human alveolar type II cells exposed to TNF‐α, IL‐1β, and IFN‐γ
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145579/1/phy213831_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/145579/2/phy213831.pdf
dc.identifier.doi10.14814/phy2.13831
dc.identifier.sourcePhysiological Reports
dc.identifier.citedreferenceRitchie, M. E., B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, et al. 2015. limma powers differential expression analyses for RNA‐sequencing and microarray studies. Nucleic Acids Res. 43: e47.
dc.identifier.citedreferenceSchmittgen, T. D., and K. J. Livak. 2008. Analyzing real‐time PCR data by the comparative C(T) method. Nat. Protoc. 3: 1101 – 1108.
dc.identifier.citedreferenceMaruhashi, T., I. Kii, M. Saito, and A. Kudo. 2010. Interaction between periostin and BMP‐1 promotes proteolytic activation of lysyl oxidase. J. Biol. Chem. 285: 13294 – 13303.
dc.identifier.citedreferenceMatthay, M. A. 2014. Resolution of pulmonary edema. Thirty years of progress. Am. J. Respir. Crit. Care Med. 189: 1301 – 1308.
dc.identifier.citedreferenceMatthay, M. A., H. G. Folkesson, and C. Clerici. 2002. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol. Rev. 82: 569 – 600.
dc.identifier.citedreferenceMatthay, M. A., S. Pati, and J.‐W. Lee. 2017. Concise review: mesenchymal stem (Stromal) cells: biology and preclinical evidence for therapeutic potential for organ dysfunction following trauma or sepsis. Stem Cells 35: 316 – 324.
dc.identifier.citedreferenceNabhan, A. N., D. G. Brownfield, P. B. Harbury, M. A. Krasnow, and T. J. Desai. 2018. Single‐cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 359: 1118 – 1123.
dc.identifier.citedreferenceOrtiz, L. A., M. Dutreil, C. Fattman, A. C. Pandey, G. Torres, K. Go, et al. 2007. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc. Natl Acad. Sci. USA 104: 11002 – 11007.
dc.identifier.citedreferencePei, L., M. Leblanc, G. Barish, A. Atkins, R. Nofsinger, J. Whyte, et al. 2011. Thyroid hormone receptor repression is linked to type I pneumocyte‐associated respiratory distress syndrome. Nat. Med. 17: 1466 – 1472.
dc.identifier.citedreferencePlanès, C., M. Blot‐Chabaud, M. A. Matthay, S. Couette, T. Uchida, and C. Clerici. 2002. Hypoxia and beta 2‐agonists regulate cell surface expression of the epithelial sodium channel in native alveolar epithelial cells. J. Biol. Chem. 277: 47318 – 47324.
dc.identifier.citedreferenceHartl, D., and M. Griese. 2006. Surfactant protein D in human lung diseases. Eur. J. Clin. Invest. 36: 423 – 435.
dc.identifier.citedreferenceRubenfeld, G. D., E. Caldwell, E. Peabody, J. Weaver, D. P. Martin, M. Neff, et al. 2005. Incidence and outcomes of acute lung injury. N. Engl. J. Med. 353: 1685 – 1693.
dc.identifier.citedreferencedos Santos, C. C., S. Murthy, P. Hu, Y. Shan, J. J. Haitsma, S. H. J. Mei, et al. 2012. Network analysis of transcriptional responses induced by mesenchymal stem cell treatment of experimental sepsis. Am. J. Pathol. 181: 1681 – 1692.
dc.identifier.citedreferenceSidhu, S. S., S. Yuan, A. L. Innes, S. Kerr, P. G. Woodruff, L. Hou, et al. 2010. Roles of epithelial cell‐derived periostin in TGF‐beta activation, collagen production, and collagen gel elasticity in asthma. Proc. Natl Acad. Sci. USA 107: 14170 – 14175.
dc.identifier.citedreferenceSpaggiari, G. M., A. Capobianco, S. Becchetti, M. C. Mingari, and L. Moretta. 2006. Mesenchymal stem cell‐natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL‐2‐induced NK‐cell proliferation. Blood 107: 1484 – 1490.
dc.identifier.citedreferenceStegemann‐Koniszewski, S., A. Jeron, M. Gereke, R. Geffers, A. Kröger, M. Gunzer, et al. 2016. Alveolar type II epithelial cells contribute to the anti‐influenza a virus response in the lung by integrating pathogen‐ and microenvironment‐derived signals. mBio 7: e00276.
dc.identifier.citedreferenceStone, K. C., R. R. Mercer, P. Gehr, B. Stockstill, and J. D. Crapo. 1992. Allometric relationships of cell numbers and size in the mammalian lung. Am. J. Respir. Cell Mol. Biol. 6: 235 – 243.
dc.identifier.citedreferenceSubramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, et al. 2005. Gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles. Proc. Natl Acad. Sci. USA 102: 15545 – 15550.
dc.identifier.citedreferenceThompson, B. T., R. C. Chambers, and K. D. Liu. 2017. Acute respiratory distress syndrome. N. Engl. J. Med. 377: 562 – 572.
dc.identifier.citedreferenceThorley, A. J., P. A. Ford, M. A. Giembycz, P. Goldstraw, A. Young, and T. D. Tetley. 2007. Differential regulation of cytokine release and leukocyte migration by lipopolysaccharide‐stimulated primary human lung alveolar type II epithelial cells and macrophages. J. Immunol. 1950: 463 – 473.
dc.identifier.citedreferenceUehara, A., Y. Fujimoto, K. Fukase, and H. Takada. 2007. Various human epithelial cells express functional Toll‐like receptors, NOD1 and NOD2 to produce anti‐microbial peptides, but not proinflammatory cytokines. Mol. Immunol. 44: 3100 – 3111.
dc.identifier.citedreferenceWare, L. B., and M. A. Matthay. 2002. Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair. Am. J. Physiol. Lung Cell. Mol. Physiol. 282: L924 – L940.
dc.identifier.citedreferenceWhitsett, J. A., L. M. Nogee, T. E. Weaver, and A. D. Horowitz. 1995. Human surfactant protein B: structure, function, regulation, and genetic disease. Physiol. Rev. 75: 749 – 757.
dc.identifier.citedreferenceWilliams, A. E., R. J. José, P. F. Mercer, D. Brealey, D. Parekh, D. R. Thickett, et al. 2017. Evidence for chemokine synergy during neutrophil migration in ARDS. Thorax 72: 66 – 73.
dc.identifier.citedreferenceZamaraev, A. V., G. S. Kopeina, E. A. Prokhorova, B. Zhivotovsky, and I. N. Lavrik. 2017. Post‐translational modification of caspases: the other side of apoptosis regulation. Trends Cell Biol. 27: 322 – 339.
dc.identifier.citedreferenceZappia, E., S. Casazza, E. Pedemonte, F. Benvenuto, I. Bonanni, E. Gerdoni, et al. 2005. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T‐cell anergy. Blood 106: 1755 – 1761.
dc.identifier.citedreferenceZemans, R. L., N. Briones, M. Campbell, J. McClendon, S. K. Young, T. Suzuki, et al. 2011. Neutrophil transmigration triggers repair of the lung epithelium via beta‐catenin signaling. Proc. Natl Acad. Sci. USA 108: 15990 – 15995.
dc.identifier.citedreferenceHuppert, L. A., and M. A. Matthay. 2017. Alveolar fluid clearance in pathologically relevant conditions: in vitro and in vivo models of acute respiratory distress syndrome. Front Immunol. 8: 371.
dc.identifier.citedreferenceAkram, K. M., S. Samad, M. A. Spiteri, and N. R. Forsyth. 2013. Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms. Respir. Res. 14: 9.
dc.identifier.citedreferenceBarkauskas, C. E., M. J. Cronce, C. R. Rackley, E. J. Bowie, D. R. Keene, B. R. Stripp, et al. 2013. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. 123: 3025 – 3036.
dc.identifier.citedreferenceBellani, G., J. G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, et al. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315: 788 – 800.
dc.identifier.citedreferenceBenjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R Stat. Soc. Ser. B Methodol. 57: 289 – 300.
dc.identifier.citedreferenceCroft, D., A. F. Mundo, R. Haw, M. Milacic, J. Weiser, G. Wu, et al. 2014. The reactome pathway knowledgebase. Nucleic Acids Res. 42: D472 – D477.
dc.identifier.citedreferenceCulhane, A. C., J. Thioulouse, G. Perrière, and D. G. Higgins. 2005. MADE4: an R package for multivariate analysis of gene expression data. Bioinformatics 21: 2789 – 2790.
dc.identifier.citedreferenceDai, M., P. Wang, A. D. Boyd, G. Kostov, B. Athey, E. G. Jones, et al. 2005. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 33: e175.
dc.identifier.citedreferenceDallas, P. B., N. G. Gottardo, M. J. Firth, A. H. Beesley, K. Hoffmann, P. A. Terry, et al. 2005. Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real‐time RT‐PCR – how well do they correlate? BMC Genom. 6: 59.
dc.identifier.citedreferenceDesai, T. J., D. G. Brownfield, and M. A. Krasnow. 2014. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507: 190 – 194.
dc.identifier.citedreferenceDurinck, S., P. T. Spellman, E. Birney, and W. Huber. 2009. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4: 1184 – 1191.
dc.identifier.citedreferenceEdgar, R., M. Domrachev, and A. E. Lash. 2002. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30: 207 – 210.
dc.identifier.citedreferenceEisen, M. B., P. T. Spellman, P. O. Brown, and D. Botstein. 1998. Cluster analysis and display of genome‐wide expression patterns. Proc. Natl Acad. Sci. USA 95: 14863 – 14868.
dc.identifier.citedreferenceEvans, S. E., Y. Xu, M. J. Tuvim, and B. F. Dickey. 2010. Inducible innate resistance of lung epithelium to infection. Annu. Rev. Physiol. 72: 413 – 435.
dc.identifier.citedreferenceFang, X., A. P. Neyrinck, M. A. Matthay, and J. W. Lee. 2010. Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin‐1. J. Biol. Chem. 285: 26211 – 26222.
dc.identifier.citedreferenceFang, X., J. Abbott, L. Cheng, J. K. Colby, J. W. Lee, B. D. Levy, et al. 2015. Human mesenchymal stem (Stromal) cells promote the resolution of acute lung injury in part through lipoxin A4. J. Immunol. 1950: 875 – 881.
dc.identifier.citedreferenceGoetzman, E. S., J. F. Alcorn, S. S. Bharathi, R. Uppala, K. J. McHugh, B. Kosmider, et al. 2014. Long‐chain acyl‐CoA dehydrogenase deficiency as a cause of pulmonary surfactant dysfunction. J. Biol. Chem. 289: 10668 – 10679.
dc.identifier.citedreferenceGupta, N., X. Su, B. Popov, J. W. Lee, V. Serikov, and M. A. Matthay. 2007. Intrapulmonary delivery of bone marrow‐derived mesenchymal stem cells improves survival and attenuates endotoxin‐induced acute lung injury in mice. J. Immunol. 1950: 1855 – 1863.
dc.identifier.citedreferenceHaczku, A. 2008. Protective role of the lung collectins surfactant protein A and surfactant protein D in airway inflammation. J. Allergy Clin. Immunol. 122: 861 – 879; quiz 880–881.
dc.identifier.citedreferenceIchikawa, A., K. Kuba, M. Morita, S. Chida, H. Tezuka, H. Hara, et al. 2013. CXCL10‐CXCR3 enhances the development of neutrophil‐mediated fulminant lung injury of viral and nonviral origin. Am. J. Respir. Crit. Care Med. 187: 65 – 77.
dc.identifier.citedreferenceIrizarry, R. A., B. Hobbs, F. Collin, Y. D. Beazer‐Barclay, K. J. Antonellis, U. Scherf, et al. 2003. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249 – 264.
dc.identifier.citedreferenceIslam, M. N., S. R. Das, M. T. Emin, M. Wei, L. Sun, K. Westphalen, et al. 2012. Mitochondrial transfer from bone‐marrow‐derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18: 759 – 765.
dc.identifier.citedreferenceJansing, N. L., J. McClendon, P. M. Henson, R. M. Tuder, D. M. Hyde, and R. L. Zemans. 2017. Unbiased quantitation of alveolar type II to alveolar type I cell transdifferentiation during repair after lung injury in mice. Am. J. Respir. Cell Mol. Biol. 57: 519 – 526.
dc.identifier.citedreferenceKanda, N., T. Shimizu, Y. Tada, and S. Watanabe. 2007. IL‐18 enhances IFN‐gamma‐induced production of CXCL9, CXCL10, and CXCL11 in human keratinocytes. Eur. J. Immunol. 37: 338 – 350.
dc.identifier.citedreferenceKanehisa, M., and S. Goto. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27 – 30.
dc.identifier.citedreferenceLaffey, J. G., and M. A. Matthay. 2017. Fifty years of research in ARDS. Cell‐based therapy for acute respiratory distress syndrome. Biology and potential therapeutic value. Am. J. Respir. Crit. Care Med. 196: 266 – 273.
dc.identifier.citedreferenceLamouille, S., J. Xu, and R. Derynck. 2014. Molecular mechanisms of epithelial‐mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15: 178 – 196.
dc.identifier.citedreferenceLe Goffic, R., V. Balloy, M. Lagranderie, L. Alexopoulou, N. Escriou, R. Flavell, et al. 2006. Detrimental contribution of the Toll‐like receptor (TLR)3 to influenza A virus‐induced acute pneumonia. PLoS Pathog. 2: e53.
dc.identifier.citedreferenceLee, J. W., X. Fang, G. Dolganov, R. D. Fremont, J. A. Bastarache, L. B. Ware, et al. 2007. Acute lung injury edema fluid decreases net fluid transport across human alveolar epithelial type II cells. J. Biol. Chem. 282: 24109 – 24119.
dc.identifier.citedreferenceLee, J. W., X. Fang, N. Gupta, V. Serikov, and M. A. Matthay. 2009. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin‐induced acute lung injury in the ex vivo perfused human lung. Proc. Natl Acad. Sci. USA 106: 16357 – 16362.
dc.identifier.citedreferenceLi, Y.‐P., S. Paczesny, E. Lauret, S. Poirault, P. Bordigoni, F. Mekhloufi, et al. 2008. Human mesenchymal stem cells license adult CD34 + hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. J. Immunol. 1950: 1598 – 1608.
dc.identifier.citedreferenceLiberzon, A., C. Birger, H. Thorvaldsdóttir, M. Ghandi, J. P. Mesirov, and P. Tamayo. 2015. The molecular signatures database hallmark gene set collection. Cell Syst. 1: 417 – 425.
dc.identifier.citedreferenceLuo, W., and C. Brouwer. 2013. Pathview: an R/Bioconductor package for pathway‐based data integration and visualization. Bioinformatis 29: 1830 – 1831.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.