Dynamic Core Community Detection and Information Diffusion Processes on Networks
Bao, Wei
2018
Abstract
Interest in network science has been increasingly shared among various research communities due to its broad range of applications. Many real world systems can be abstracted as networks, a group of nodes connected by pairwise edges, and examples include friendship networks, metabolic networks, and world wide web among others. Two of the main research areas in network science that have received a lot of focus are community detection and information diffusion. As for community detection, many well developed algorithms are available for such purposes in static networks, for example, spectral partitioning and modularity function based optimization algorithms. As real world data becomes richer, community detection in temporal networks becomes more and more desirable and algorithms such as tensor decomposition and generalized modularity function optimization are developed. One scenario not well investigated is when the core community structure persists over long periods of time with possible noisy perturbations and changes only over periods of small time intervals. The contribution of this thesis in this area is to propose a new algorithm based on low rank component recovery of adjacency matrices so as to identify the phase transition time points and improve the accuracy of core community structure recovery. As for information diffusion, traditionally it was studied using either threshold models or independent interaction models as an epidemic process. But information diffusion mechanism is different from epidemic process such as disease transmission because of the reluctance to tell stale news and to address this issue other models such as DK model was proposed taking into consideration of the reluctance of spreaders to diffuse the information as time goes by. However, this does not capture some cases such as the losing interest of information receivers as in viral marketing. The contribution of this thesis in this area is we proposed two new models coined susceptible-informed-immunized (SIM) model and exponentially time decaying susceptible-informed (SIT) model to successfully capture the intrinsic time value of information from both the spreader and receiver points of view. Rigorous analysis of the dynamics of the two models were performed based mainly on mean field theory. The third contribution of this thesis is on the information diffusion optimization. Controlling information diffusion has been widely studied because of its important applications in areas such as social census, disease control and marketing. Traditionally the problem is formulated as identifying the set of k seed nodes, informed initially, so as to maximize the diffusion size. Heuristic algorithms have been developed to find approximate solutions for this NP-hard problem, and measures such as k-shell, node degree and centrality have been used to facilitate the searching for optimal solutions. The contribution of this thesis in this field is to design a more realistic objective function and apply binary particle swarm optimization algorithm for this combinatorial optimization problem. Instead of fixating the seed nodes size and maximize the diffusion size, we maximize the profit defined as the revenue, which is simply the diffusion size, minus the cost of setting those seed nodes, which is designed as a function of degrees of the seed nodes or a measure that is similar to the centrality of nodes. Because of the powerful algorithm, we were able to study complex scenarios such as information diffusion optimization on multilayer networks.Subjects
COMPLEX NETWORKS INFORMATION DIFFUSION
Types
Thesis
Metadata
Show full item recordCollections
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.