Short‐Term and Interannual Variations of Migrating Diurnal and Semidiurnal Tides in the Mesosphere and Lower Thermosphere
dc.contributor.author | Dhadly, Manbharat S. | |
dc.contributor.author | Emmert, John T. | |
dc.contributor.author | Drob, Douglas P. | |
dc.contributor.author | McCormack, John P. | |
dc.contributor.author | Niciejewski, Rick J. | |
dc.date.accessioned | 2018-11-20T15:31:27Z | |
dc.date.available | 2019-10-01T16:02:10Z | en |
dc.date.issued | 2018-08 | |
dc.identifier.citation | Dhadly, Manbharat S.; Emmert, John T.; Drob, Douglas P.; McCormack, John P.; Niciejewski, Rick J. (2018). "Short‐Term and Interannual Variations of Migrating Diurnal and Semidiurnal Tides in the Mesosphere and Lower Thermosphere." Journal of Geophysical Research: Space Physics 123(8): 7106-7123. | |
dc.identifier.issn | 2169-9380 | |
dc.identifier.issn | 2169-9402 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/146276 | |
dc.description.abstract | Among the broad spectrum of vertically propagating tides, migrating diurnal (DW1) and semidiurnal (SW2) are prominent modes of energetic and dynamical coupling between the mesosphere and lower thermosphere and the upper thermosphere and ionosphere. DW1 and SW2 tides are modulated on time scales ranging from days to years. NASA Thermosphere‐Ionosphere‐Mesosphere Energetic and Dynamics (TIMED) is the first observational platform to perform global synoptic observations of these fundamental tides (for nearly two decades) overcoming previous observational limitations. Here we utilize the extensive archive of TIMED Doppler Interferometer wind measurements and exploit the capabilities of tidal theory to estimate short‐term (<1 month), seasonal (intra‐annual), long‐term (>1 year), and climatological variability in DW1 (1,1), SW2 (2,2), and SW2 (2,3) modes and then compare with tidal estimates derived from the Navy Global Environmental Model‐High Altitude version data assimilation system. Overall, the tidal estimates from TIMED Doppler Interferometer and Navy Global Environmental Model‐High Altitude version are similar and exhibit significant short‐term and intra‐annual variability. The short‐term variability can induce ∼64% change in the DW1 amplitude. Statistically, the short‐term variability in DW1 (1,1), SW2 (2,2), and SW2 (2,3) modes is of the order of ∼9, 33, and 20 m/s, respectively. The biennial oscillations in DW1 and SW2 modes suggest a systematic correlation with the equatorial quasi‐biennial oscillation in the stratosphere and are more apparent in DW1 amplitudes. Although there is significant interannual variability in addition to the apparent biennial signal, there is no clear evidence of any solar cycle dependence or long‐term trend in either DW1 or SW2 modes.Key PointsShort‐term and intra‐annual variability in DW1 and SW2 tidal modes estimated from TIDI and NAVGEM‐HA are in good agreementThe biennial oscillations in DW1 and SW2 modes are systematically correlated with equatorial stratospheric quasi‐biennial oscillationThere is no clear evidence of any solar cycle dependence or long‐term trend in either DW1 or SW2 modes | |
dc.publisher | Academic Press | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | MLT tides | |
dc.subject.other | atmospheric tides | |
dc.subject.other | short‐term variability | |
dc.subject.other | DW1 and SW2 tides | |
dc.subject.other | interannual variability | |
dc.subject.other | migrating tides | |
dc.title | Short‐Term and Interannual Variations of Migrating Diurnal and Semidiurnal Tides in the Mesosphere and Lower Thermosphere | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Astronomy and Astrophysics | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/146276/1/jgra54488_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/146276/2/jgra54488.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/146276/3/jgra54488-sup-0001-supplementary.pdf | |
dc.identifier.doi | 10.1029/2018JA025748 | |
dc.identifier.source | Journal of Geophysical Research: Space Physics | |
dc.identifier.citedreference | Oberheide, J., Forbes, J. M., Häusler, K., Wu, Q., & Bruinsma, S. L. ( 2009 ). Tropospheric tides from 80 to 400 km: Propagation, interannual variability, and solar cycle effects. Journal of Geophysical Research, 114, D00I05. https://doi.org/10.1029/2009JD012388 | |
dc.identifier.citedreference | Oberheide, J., Forbes, J. M., Zhang, X., & Bruinsma, S. L. ( 2011 ). Climatology of upward propagating diurnal and semidiurnal tides in the thermosphere. Journal of Geophysical Research, 116, A11306. https://doi.org/10.1029/2011JA016784 | |
dc.identifier.citedreference | Oberheide, J., Hagan, M. E., Roble, R. G., & Offermann, D. ( 2002 ). Sources of nonmigrating tides in the tropical middle atmosphere. Journal of Geophysical Research, 107 ( D21 ), ACL 6–1–ACL 6‐14. https://doi.org/10.1029/2002JD002220 | |
dc.identifier.citedreference | Oberheide, J., Shiokawa, K., Gurubaran, S., Ward, W. E., Fujiwara, H., Kosch, M. J., et al. ( 2015 ). The geospace response to variable inputs from the lower atmosphere: A review of the progress made by Task Group 4 of CAWSES‐II. Progress in Earth and Planetary Science, 2 ( 1 ), 2. https://doi.org/10.1186/s40645-014-0031-4 | |
dc.identifier.citedreference | Oberheide, J., Wu, Q., Killeen, T. L., Hagan, M. E., & Roble, R. G. ( 2006 ). Diurnal nonmigrating tides from TIMED Doppler Interferometer wind data: Monthly climatologies and seasonal variations. Journal of Geophysical Research, 111, A10S03. https://doi.org/10.1029/2005JA011491 | |
dc.identifier.citedreference | Ortland, D. A. ( 2005 ). A study of the global structure of the migrating diurnal tide using generalized Hough modes. Journal of the Atmospheric Sciences, 62 ( 8 ), 2684 – 2702. https://doi.org/10.1175/JAS3501.1 | |
dc.identifier.citedreference | Ortland, D. A. ( 2017 ). Daily estimates of the migrating tide and zonal mean temperature in the mesosphere and lower thermosphere derived from SABER data. Journal of Geophysical Research: Atmospheres, 122, 3754 – 3785. https://doi.org/10.1002/2016JD025573 | |
dc.identifier.citedreference | Pedatella, N. M., Liu, H.‐L., & Richmond, A. D. ( 2012 ). Atmospheric semidiurnal lunar tide climatology simulated by the Whole Atmosphere Community Climate Model. Journal of Geophysical Research, 117, A06327. https://doi.org/10.1029/2012JA017792 | |
dc.identifier.citedreference | Pedatella, N. M., Richmond, A. D., Maute, A., & Liu, H.‐L. ( 2016 ). Impact of semidiurnal tidal variability during SSWs on the mean state of the ionosphere and thermosphere. Journal of Geophysical Research: Space Physics, 121, 8077 – 8088. https://doi.org/10.1002/2016JA022910 | |
dc.identifier.citedreference | Riggin, D. M., & Lieberman, R. S. ( 2013 ). Variability of the diurnal tide in the equatorial MLT. Journal of Atmospheric and Solar‐Terrestrial Physics, 102, 198 – 206. https://doi.org/10.1016/j.jastp.2013.05.011 | |
dc.identifier.citedreference | Shepherd, G. G., Thuillier, G., Cho, Y.‐M., Duboin, M.‐L., Evans, W. F. J., Gault, W. A., et al. ( 2012 ). The Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite: A 20 year perspective. Reviews of Geophysics, 50, RG2007. https://doi.org/10.1029/2012RG000390 | |
dc.identifier.citedreference | Singh, D., & Gurubaran, S. ( 2017 ). Variability of diurnal tide in the MLT region over Tirunelveli (8.7°N), India: Consistency between ground‐ and space‐based observations. Journal of Geophysical Research: Atmospheres, 122, 2696 – 2713. https://doi.org/10.1002/2016JD025910 | |
dc.identifier.citedreference | Sprenger, K., & Schminder, R. ( 1969 ). Solar cycle dependence of winds in the lower ionosphere. Journal of Atmospheric and Terrestrial Physics, 31 ( 1 ), 217 – 221. https://doi.org/10.1016/0021-9169(69)90100-7 | |
dc.identifier.citedreference | Sridharan, S., Tsuda, T., & Gurubaran, S. ( 2010 ). Long‐term tendencies in the mesosphere/lower thermosphere mean winds and tides as observed by medium‐frequency radar at Tirunelveli (8.7°N, 77.8°E). Journal of Geophysical Research, 115, D08109. https://doi.org/10.1029/2008JD011609 | |
dc.identifier.citedreference | Truskowski, A. O., Forbes, J. M., Zhang, X., & Palo, S. E. ( 2014 ). New perspectives on thermosphere tides: 1. Lower thermosphere spectra and seasonal‐latitudinal structures. Earth, Planets and Space, 66 ( 1 ), 136. https://doi.org/10.1186/s40623-014-0136-4 | |
dc.identifier.citedreference | Vincent, R. A., Kovalam, S., Fritts, D. C., & Isler, J. R. ( 1998 ). Long‐term MF radar observations of solar tides in the low‐latitude mesosphere: Interannual variability and comparisons with the GSWM. Journal of Geophysical Research, 103 ( D8 ), 8667 – 8683. https://doi.org/10.1029/98JD00482 | |
dc.identifier.citedreference | Wang, H., Boyd, J. P., & Akmaev, R. A. ( 2016 ). On computation of Hough functions. Geoscientific Model Development, 9 ( 4 ), 1477 – 1488. https://doi.org/10.5194/gmd-9-1477-2016 | |
dc.identifier.citedreference | Ward, W. E., Oberheide, J., Goncharenko, L. P., Nakamura, T., Hoffmann, P., Singer, W., et al. ( 2010 ). On the consistency of model, ground‐based, and satellite observations of tidal signatures: Initial results from the CAWSES tidal campaigns. Journal of Geophysical Research, 115, D07107. https://doi.org/10.1029/2009JD012593 | |
dc.identifier.citedreference | Wu, Q., McEwen, D., Guo, W., Niciejewski, R., Roble, R., & Won, Y.‐I. ( 2008 ). Long‐term thermospheric neutral wind observations over the northern polar cap. Journal of Atmospheric and Solar‐Terrestrial Physics, 70 ( 16 ), 2014 – 2030. https://doi.org/10.1016/j.jastp.2008.09.004 | |
dc.identifier.citedreference | Wu, Q., Ortland, D., Solomon, S., Skinner, W., & Niciejewski, R. ( 2011 ). Global distribution, seasonal, and inter‐annual variations of mesospheric semidiurnal tide observed by TIMED TIDI. Journal of Atmospheric and Solar‐Terrestrial Physics, 73 ( 17–18 ), 2482 – 2502. https://doi.org/10.1016/J.JASTP.2011.08.007 | |
dc.identifier.citedreference | Xu, J., Smith, A. K., Liu, H.‐L., Yuan, W., Wu, Q., Jiang, G., et al. ( 2009 ). Seasonal and quasi‐biennial variations in the migrating diurnal tide observed by Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED). Journal of Geophysical Research, 114, D13107. https://doi.org/10.1029/2008JD011298 | |
dc.identifier.citedreference | Yamazaki, Y., Häusler, K., & Wild, J. A. ( 2016 ). Day‐to‐day variability of midlatitude ionospheric currents due to magnetospheric and lower atmospheric forcing. Journal of Geophysical Research: Space Physics, 121, 7067 – 7086. https://doi.org/10.1002/2016JA022817 | |
dc.identifier.citedreference | Yamazaki, Y., & Richmond, A. D. ( 2013 ). A theory of ionospheric response to upward‐propagating tides: Electrodynamic effects and tidal mixing effects. Journal of Geophysical Research: Space Physics, 118, 5891 – 5905. https://doi.org/10.1002/jgra.50487 | |
dc.identifier.citedreference | Yigit, E., & Medvedev, A. S. ( 2015 ). Internal wave coupling processes in Earth’s atmosphere. Advances in Space Research, 55 ( 4 ), 983 – 1003. https://doi.org/10.1016/J.ASR.2014.11.020 | |
dc.identifier.citedreference | Yuan, T., Schmidt, H., She, C. Y., Krueger, D. A., & Reising, S. ( 2008 ). Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above Fort Collins, Colorado (40.6°N, 105.1°W). Journal of Geophysical Research, 113, D20103. https://doi.org/10.1029/2007JD009687 | |
dc.identifier.citedreference | Andrews, D. G., Holton, J. R., & Leovy, C. B. ( 1987 ). Middle Atmosphere Dynamics (p. 489 ). New York: Academic Press. | |
dc.identifier.citedreference | Beard, A., Mitchell, N., Williams, P., & Kunitake, M. ( 1999 ). Non‐linear interactions between tides and planetary waves resulting in periodic tidal variability. Journal of Atmospheric and Solar‐Terrestrial Physics, 61 ( 5 ), 363 – 376. https://doi.org/10.1016/S1364-6826(99)00003-6 | |
dc.identifier.citedreference | Beldon, C. L., & Mitchell, N. J. ( 2010 ). Gravity wave‐tidal interactions in the mesosphere and lower thermosphere over Rothera, Antarctica (68°S, 68°W). Journal of Geophysical Research, 115, D18101. https://doi.org/10.1029/2009JD013617 | |
dc.identifier.citedreference | Bremer, J., Schminder, R., Greisiger, K. M., Hoffmann, P., Kürschner, D., & Singer, W. ( 1997 ). Solar cycle dependence and long‐term trends in the wind field of the mesosphere/lower thermosphere. Journal of Atmospheric and Solar‐Terrestrial Physics, 59 ( 5 ), 497 – 509. https://doi.org/https://doi.org/10.1016/S1364-6826(96)00032-6 | |
dc.identifier.citedreference | Buriti, R. A., Hocking, W. K., Batista, P. P., Medeiros, A. F., & Clemesha, B. R. ( 2008 ). Observations of equatorial mesospheric winds over Cariri (7.4°S) by a meteor radar and comparison with existing models. Annales Geophysicae, 26 ( 3 ), 485 – 497. https://doi.org/10.5194/angeo-26-485-2008 | |
dc.identifier.citedreference | Burrage, M. D., Hagan, M. E., Skinner, W. R., Wu, D. L., & Hays, P. B. ( 1995 ). Long‐term variability in the solar diurnal tide observed by HRDI and simulated by the GSWM. Geophysical Research Letters, 22 ( 19 ), 2641 – 2644. https://doi.org/10.1029/95GL02635 | |
dc.identifier.citedreference | Chang, J. L., & Avery, S. K. ( 1997 ). Observations of the diurnal tide in the mesosphere and lower thermosphere over Christmas Island. Journal of Geophysical Research, 102 ( D2 ), 1895 – 1907. https://doi.org/10.1029/96JD03378 | |
dc.identifier.citedreference | Chang, L. C., Palo, S. E., & Liu, H.‐L. ( 2011 ). Short‐term variability in the migrating diurnal tide caused by interactions with the quasi 2 day wave. Journal of Geophysical Research, 116, D12112. https://doi.org/10.1029/2010JD014996 | |
dc.identifier.citedreference | Chapman, S., & Lindzen, R. S. ( 1970 ). Atmospheric Tides: Thermal and Gravitational (pp. 212 ). Boulder, CO: D. Reidel, National Center for Atmospheric Research. | |
dc.identifier.citedreference | Davis, R. N., Du, J., Smith, A. K., Ward, W. E., & Mitchell, N. J. ( 2013 ). The diurnal and semidiurnal tides over Ascension Island (8°S, 14°W) and their interaction with the stratospheric quasi‐biennial oscillation: Studies with meteor radar, eCMAM and WACCM. Atmospheric Chemistry and Physics, 13 ( 18 ), 9543 – 9564. https://doi.org/10.5194/acp-13-9543-2013 | |
dc.identifier.citedreference | Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E., Conde, M., et al. ( 2015 ). An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth and Space Science, 2 ( 7 ), 301 – 319. https://doi.org/10.1002/2014EA000089 | |
dc.identifier.citedreference | England, S. L., Maus, S., Immel, T. J., & Mende, S. B. ( 2006 ). Longitudinal variation of the E‐region electric fields caused by atmospheric tides. Geophysical Research Letters, 33, L21105. https://doi.org/10.1029/2006GL027465 | |
dc.identifier.citedreference | Fang, T.‐W., Akmaev, R., Fuller‐Rowell, T., Wu, F., Maruyama, N., & Millward, G. ( 2013 ). Longitudinal and day‐to‐day variability in the ionosphere from lower atmosphere tidal forcing. Geophysical Research Letters, 40, 2523 – 2528. https://doi.org/10.1002/grl.50550 | |
dc.identifier.citedreference | Fiedler, J., Baumgarten, G., & von Cossart, G. ( 2005 ). Mean diurnal variations of noctilucent clouds during 7 years of lidar observations at ALOMAR. Annales Geophysicae, 23 ( 4 ), 1175 – 1181. https://doi.org/10.5194/angeo-23-1175-2005 | |
dc.identifier.citedreference | Forbes, J. M. ( 1982a ). Atmospheric tides: 1. Model description and results for the solar diurnal component. Journal of Geophysical Research, 87 ( 1 ), 5222 – 5240. https://doi.org/10.1029/JA087iA07p05222 | |
dc.identifier.citedreference | Forbes, J. M. ( 1982b ). Atmospheric tide: 2. The solar and lunar semidiurnal components. Journal of Geophysical Research, 87 ( A7 ), 5241 – 5252. https://doi.org/10.1029/JA087iA07p05241 | |
dc.identifier.citedreference | Forbes, J. M. ( 1995 ). Tidal and Planetary Waves: The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophysical Monograph Series (Vol. 87, p. 356 ). Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM087p0067 | |
dc.identifier.citedreference | Forbes, J. M. ( 2009 ). Vertical coupling by the semidiurnal tide in Earth’s atmosphere. In T. Tsuda, R. Fujii, K. Shibata, & M. A. Geller (Eds.), Climate and Weather of the Sun‐Earth System(CAWSES): Selected Papers from the 2007 Kyoto Symposium (pp. 337 – 348 ). Tokyo: TERRAPUB. | |
dc.identifier.citedreference | Forbes, J. M., & Garrett, H. B. ( 1979 ). Theoretical studies of atmospheric tides. Reviews of Geophysics, 17 ( 8 ), 1951 – 1981. https://doi.org/10.1029/RG017i008p01951 | |
dc.identifier.citedreference | Forbes, J. M., Garrett, H. B., Forbes, J. M., & Garrett, H. B. ( 1976 ). Solar diurnal tide in the thermosphere. Journal of the Atmospheric Sciences, 33 ( 11 ), 2226 – 2241. https://doi.org/10.1175/1520-0469(1976)033<2226:SDTITT>2.0.CO;2 | |
dc.identifier.citedreference | Forbes, J. M., & Groves, G. V. ( 1987 ). Diurnal propagating tides in the low‐latitude middle atmosphere. Journal of Atmospheric and Terrestrial Physics, 49 ( 2 ), 153 – 164. https://doi.org/10.1016/0021-9169(87)90050-X | |
dc.identifier.citedreference | Forbes, J. M., & Hagan, M. E. ( 1982 ). Thermospheric extensions of the classical expansion functions for semidiurnal tides. Journal of Geophysical Research, 87 ( A7 ), 5253 – 5259. https://doi.org/10.1029/JA087iA07p05253 | |
dc.identifier.citedreference | Forbes, J. M., Palo, S. E., & Zhang, X. ( 2000 ). Variability of the ionosphere. Journal of Atmospheric and Solar‐Terrestrial Physics, 62 ( 8 ), 685 – 693. https://doi.org/10.1016/S1364-6826(00)00029-8 | |
dc.identifier.citedreference | Forbes, J. M., Wu, D., Forbes, J. M., & Wu, D. ( 2006 ). Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS. Journal of the Atmospheric Sciences, 63 ( 7 ), 1776 – 1797. https://doi.org/10.1175/JAS3724.1 | |
dc.identifier.citedreference | Forbes, J. M., Zhang, X., Palo, S., Russell, J., Mertens, C. J., & Mlynczak, M. ( 2008 ). Tidal variability in the ionospheric dynamo region. Journal of Geophysical Research, 113, A02310. https://doi.org/10.1029/2007JA012737 | |
dc.identifier.citedreference | Fraser, G. ( 1990 ). Long‐term variations in mid‐latitude southern hemisphere mesospheric winds. Advances in Space Research, 10 ( 10 ), 247 – 250. https://doi.org/10.1016/0273-1177(90)90039-3 | |
dc.identifier.citedreference | Fraser, G. J., Vincent, R. A., Manson, A. H., Meek, C. E., & Clark, R. R. ( 1989 ). Inter‐annual variability of tides in the mesosphere and lower thermosphere. Journal of Atmospheric and Terrestrial Physics, 51 ( 7 ), 555 – 567. https://doi.org/https://doi.org/10.1016/0021-9169(89)90054-8 | |
dc.identifier.citedreference | Friedman, J. S., Zhang, X., Chu, X., & Forbes, J. M. ( 2009 ). Longitude variations of the solar semidiurnal tides in the mesosphere and lower thermosphere at low latitudes observed from ground and space. Journal of Geophysical Research, 114, D11114. https://doi.org/10.1029/2009JD011763 | |
dc.identifier.citedreference | Fritts, D. C., Vincent, R. A., Fritts, D. C., & Vincent, R. A. ( 1987 ). Mesospheric momentum flux studies at Adelaide, Australia: Observations and a gravity wave‐tidal interaction model. Journal of the Atmospheric Sciences, 44 ( 3 ), 605 – 619. https://doi.org/10.1175/1520-0469(1987)044<0605:MMFSAA>2.0.CO;2 | |
dc.identifier.citedreference | Goncharenko, L., Chau, J. L., Condor, P., Coster, A., & Benkevitch, L. ( 2013 ). Ionospheric effects of sudden stratospheric warming during moderate‐to‐high solar activity: Case study of January 2013. Geophysical Research Letters, 40, 4982 – 4986. https://doi.org/10.1002/grl.50980 | |
dc.identifier.citedreference | Greisiger, K. M., Schminder, R., & Kürschner, D. ( 1987 ). Long‐period variations of wind parameters in the mesopause region and the solar cycle dependence. Journal of Atmospheric and Terrestrial Physics, 49 ( 3 ), 281 – 285. https://doi.org/https://doi.org/10.1016/0021-9169(87)90063-8 | |
dc.identifier.citedreference | Gurubaran, S., Rajaram, R., Nakamura, T., Tsuda, T., Riggin, D., & Vincent, R. A. ( 2009 ). Radar observations of the diurnal tide in the tropical mesosphere‐lower thermosphere region: Longitudinal variabilities. Earth, Planets and Space, 61 ( 4 ), 513 – 524. https://doi.org/10.1186/BF03353168 | |
dc.identifier.citedreference | Häusler, K., & Luhr, H. ( 2009 ). Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP. Annales Geophysicae, 27, 2643 – 2652. | |
dc.identifier.citedreference | Hagan, M. E., Burrage, M. D., Forbes, J. M., Hackney, J., Randel, W. J., & Zhang, X. ( 1999 ). GSWM‐98: Results for migrating solar tides. Journal of Geophysical Research, 104 ( A4 ), 6813 – 6827. https://doi.org/10.1029/1998JA900125 | |
dc.identifier.citedreference | Hagan, M. E., & Forbes, J. M. ( 2003 ). Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. Journal of Geophysical Research, 108 ( A2 ), 1062. https://doi.org/10.1029/2002JA009466 | |
dc.identifier.citedreference | Hagan, M. E., Maute, A., & Roble, R. G. ( 2009 ). Tropospheric tidal effects on the middle and upper atmosphere. Journal of Geophysical Research, 114, A01302. https://doi.org/10.1029/2008JA013637 | |
dc.identifier.citedreference | Hamilton, K., & Hamilton, K. ( 1998 ). Effects of an imposed quasi‐biennial oscillation in a comprehensive troposphere‐stratosphere‐mesosphere general circulation model. Journal of the Atmospheric Sciences, 55 ( 14 ), 2393 – 2418. https://doi.org/10.1175/1520-0469(1998)055<2393:EOAIQB>2.0.CO;2 | |
dc.identifier.citedreference | Hays, P. B., Wu, D. L., Science Team, T. HRDI, Hays, P. B., Wu, D. L., & Team, T. H. S. ( 1994 ). Observations of the diurnal tide from space. Journal of the Atmospheric Sciences, 51 ( 20 ), 3077 – 3093. https://doi.org/10.1175/1520-0469(1994)051<3077:OOTDTF>2.0.CO;2 | |
dc.identifier.citedreference | Hernandez, G., Fraser, G. J., & Smith, R. W. ( 1993 ). Mesospheric 12‐hour oscillation near South Pole, Antarctica. Geophysical Research Letters, 20 ( 17 ), 1787 – 1790. https://doi.org/10.1029/93GL01983 | |
dc.identifier.citedreference | Hogan, T. F., Liu, M., Ridout, J. A., Peng, M. S., Whitcomb, T. R., Ruston, B. C., et al. ( 2014 ). The navy global environmental model. Oceanography, 27, 116 – 125. https://doi.org/10.2307/24862194 | |
dc.identifier.citedreference | Huang, F. T., Mayr, H. G., Reber, C. A., Russell, J. M., Mlynczak, M, & Mengel, J. G. ( 2006 ). Stratospheric and mesospheric temperature variations for the quasi‐biennial and semiannual (QBO and SAO) oscillations based on measurements from SABER (TIMED) and MLS (UARS). Annales Geophysicae, 24 ( 8 ), 2131 – 2149. https://doi.org/10.5194/angeo-24-2131-2006 | |
dc.identifier.citedreference | Immel, T. J., Sagawa, E., England, S. L., Henderson, S. B., Hagan, M. E., Mende, S. B., et al. ( 2006 ). Control of equatorial ionospheric morphology by atmospheric tides. Geophysical Research Letters, 33, L15108. https://doi.org/10.1029/2006GL026161 | |
dc.identifier.citedreference | Jacobi, C., Portnyagin, Y., Solovjova, T., Hoffmann, P., Singer, W., Fahrutdinova, A., et al. ( 1999 ). Climatology of the semidiurnal tide at 52–56°N from ground‐based radar wind measurements 1985–1995. Journal of Atmospheric and Solar‐Terrestrial Physics, 61 ( 13 ), 975 – 991. https://doi.org/10.1016/S1364-6826(99)00065-6 | |
dc.identifier.citedreference | Jacobi, C., Schminder, R., Kürschner, D., Bremer, J., Greisiger, K., Hoffmann, P., & Singer, W. ( 1997 ). Long‐term trends in the mesopause wind field obtained from LF D1 wind measurements at Collm, Germany. Advances in Space Research, 20 ( 11 ), 2085 – 2088. https://doi.org/10.1016/S0273-1177(97)00599-1 | |
dc.identifier.citedreference | Jin, H., Miyoshi, Y., Pancheva, D., Mukhtarov, P., Fujiwara, H., & Shinagawa, H. ( 2012 ). Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere‐ionosphere model GAIA with COSMIC and TIMED/SABER observations. Journal of Geophysical Research, 117, A10323. https://doi.org/10.1029/2012JA017650 | |
dc.identifier.citedreference | Killeen, T. L., Skinner, W. R., Johnson, R. M., Edmonson, C. J., Wu, Q., Niciejewski, R. J., et al. ( 1999 ). TIMED Doppler Interferometer (TIDI). In A. M. Larar (Ed.), Proceedings SPIE, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III (Vol. 3756, pp. 289 – 301 ). Denver, CO: International Society for Optics and Photonics. https://doi.org/10.1117/12.366383 | |
dc.identifier.citedreference | Killeen, T. L., Wu, Q., Solomon, S. C., Ortland, D. A., Skinner, W. R., Niciejewski, R. J., & Gell, D. A. ( 2006 ). TIMED Doppler Interferometer: Overview and recent results. Journal of Geophysical Research, 111, A10S01. https://doi.org/10.1029/2005JA011484 | |
dc.identifier.citedreference | Kuhl, D. D., Rosmond, T. E., Bishop, C. H., McLay, J., Baker, N. L., Kuhl, D. D., et al. ( 2013 ). Comparison of hybrid ensemble/4DVar and 4DVar within the NAVDAS‐AR data assimilation framework. Monthly Weather Review, 141 ( 8 ), 2740 – 2758. https://doi.org/10.1175/MWR-D-12-00182.1 | |
dc.identifier.citedreference | Kumar, K. K., Deepa, V., Antonita, T. M., & Ramkumar, G. ( 2008 ). Meteor radar observations of short‐term tidal variabilities in the low‐latitude mesosphere‐lower thermosphere: Evidence for nonlinear wave‐wave interactions. Journal of Geophysical Research, 113, D16108. https://doi.org/10.1029/2007JD009610 | |
dc.identifier.citedreference | Laskar, F. I., Chau, J. L., Stober, G., Hoffmann, P., Hall, C. M., & Tsutsumi, M. ( 2016 ). Quasi‐biennial oscillation modulation of the middle‐ and high‐latitude mesospheric semidiurnal tides during August–September. Journal of Geophysical Research: Space Physics, 121, 4869 – 4879. https://doi.org/10.1002/2015JA022065 | |
dc.identifier.citedreference | Lieberman, R. S. ( 1997 ). Long‐term variations of zonal mean winds and (1,1) driving in the equatorial lower thermosphere. Journal of Atmospheric and Solar‐Terrestrial Physics, 59 ( 13 ), 1483 – 1490. https://doi.org/10.1016/S1364-6826(96)00150-2 | |
dc.identifier.citedreference | Lieberman, R. S., Hays, P. B., Lieberman, R. S., & Hays, P. B. ( 1994 ). An estimate of the momentum deposition in the lower thermosphere by the observed diurnal tide. Journal of the Atmospheric Sciences, 51 ( 20 ), 3094 – 3105. https://doi.org/10.1175/1520-0469(1994)051<3094:AEOTMD>2.0.CO;2 | |
dc.identifier.citedreference | Lindzen, R. S., & Chapman, S. ( 1979 ). Atmospheric tides. Annual Review of Earth and Planetary Sciences, 7 ( 1 ), 199 – 225. https://doi.org/10.1146/annurev.ea.07.050179.001215. | |
dc.identifier.citedreference | Lindzen, R. S., Hong, S. S., & Forbes, J. M. ( 1977 ). Semidiurnal Hough mode extensions in the thermosphere and their application (Memo. Rep. 3442). Washington, DC: U.S. Naval Research Laboratory. | |
dc.identifier.citedreference | Liu, H., Doornbos, E., & Nakashima, J. ( 2016 ). Thermospheric wind observed by GOCE: Wind jets and seasonal variations. Journal of Geophysical Research: Space Physics, 121, 6901 – 6913. https://doi.org/10.1002/2016JA022938 | |
dc.identifier.citedreference | Mayr, H. G., & Mengel, J. G. ( 2005 ). Interannual variations of the diurnal tide in the mesosphere generated by the quasi‐biennial oscillation. Journal of Geophysical Research, 110, D10111. https://doi.org/10.1029/2004JD005055 | |
dc.identifier.citedreference | McCormack, J. P., Coy, L., & Singer, W. ( 2014 ). Intraseasonal and interannual variability of the quasi 2 day wave in the Northern Hemisphere summer mesosphere. Journal of Geophysical Research: Atmospheres, 119, 2928 – 2946. https://doi.org/10.1002/2013JD020199 | |
dc.identifier.citedreference | McCormack, J., Hoppel, K., Kuhl, D., de Wit, R., Stober, G., Espy, P., et al. ( 2017 ). Comparison of mesospheric winds from a high‐altitude meteorological analysis system and meteor radar observations during the boreal winters of 2009–2010 and 2012–2013. Journal of Atmospheric and Solar‐Terrestrial Physics, 154, 132 – 166. https://doi.org/10.1016/j.jastp.2016.12.007 | |
dc.identifier.citedreference | Mendillo, M., Rishbeth, H., Roble, R., & Wroten, J. ( 2002 ). Modelling F2‐layer seasonal trends and day‐to‐day variability driven by coupling with the lower atmosphere. Journal of Atmospheric and Solar‐Terrestrial Physics, 64 ( 18 ), 1911 – 1931. https://doi.org/10.1016/S1364-6826(02)00193-1 | |
dc.identifier.citedreference | Millward, G. H., Müller‐Wodarg, I. C. F., Aylward, A. D., Fuller‐Rowell, T. J., Richmond, A. D., & Moffett, R. J. ( 2001 ). An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere‐thermosphere model with coupled electrodynamics. Journal of Geophysical Research, 106 ( A11 ), 24,733 – 24,744. https://doi.org/10.1029/2000JA000342 | |
dc.identifier.citedreference | Mukhtarov, P., Pancheva, D., & Andonov, B. ( 2009 ). Global structure and seasonal and interannual variability of the migrating diurnal tide seen in the SABER/TIMED temperatures between 20 and 120 km. Journal of Geophysical Research, 114, A02309. https://doi.org/10.1029/2008JA013759 | |
dc.identifier.citedreference | Namboothiri, S., Manson, A., & Meek, C. ( 1993 ). Variations of mean winds and tides in the upper middle atmosphere over a solar cycle, Saskatoon, Canada, 52°N, 107°W. Journal of Atmospheric and Terrestrial Physics, 55 ( 10 ), 1325 – 1334. https://doi.org/10.1016/0021-9169(93)90101-4 | |
dc.identifier.citedreference | Namboothiri, S., Meek, C., & Manson, A. ( 1994 ). Variations of mean winds and solar tides in the mesosphere and lower thermosphere over time scales ranging from 6 months to 11 yr: Saskatoon, 52°N, 107°W. Journal of Atmospheric and Terrestrial Physics, 56 ( 10 ), 1313 – 1325. https://doi.org/10.1016/0021-9169(94)90069-8 | |
dc.identifier.citedreference | Nguyen, V., & Palo, S. ( 2013 ). Technique to produce daily estimates of the migrating diurnal tide using TIMED/SABER and EOS Aura/MLS. Journal of Atmospheric and Solar‐Terrestrial Physics, 105–106, 39 – 53. https://doi.org/10.1016/J.JASTP.2013.07.008 | |
dc.identifier.citedreference | Niciejewski, R. J., & Killeen, T. L. ( 1995 ). Nocturnal observations of the semidiurnal tide at a midlatitude site. Journal of Geophysical Research, 100 ( D12 ), 25,855 – 25,866. https://doi.org/10.1029/95JD02729 | |
dc.identifier.citedreference | Niciejewski, R., Wu, Q., Skinner, W., Gell, D., Cooper, M., Marshall, A., et al. ( 2006 ). TIMED Doppler Interferometer on the thermosphere ionosphere mesosphere energetics and dynamics satellite: Data product overview. Journal of Geophysical Research, 111, A11S90. https://doi.org/10.1029/2005JA011513 | |
dc.identifier.citedreference | Oberheide, J., & Forbes, J. M. ( 2008 ). Tidal propagation of deep tropical cloud signatures into the thermosphere from TIMED observations. Geophysical Research Letters, 35, L04816. https://doi.org/10.1029/2007GL032397 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.