Show simple item record

Performance/outcomes data and physician process challenges for practical big data efforts in radiation oncology

dc.contributor.authorMatuszak, Martha M.
dc.contributor.authorFuller, Clifton D.
dc.contributor.authorYock, Torunn I.
dc.contributor.authorHess, Clayton B.
dc.contributor.authorMcNutt, Todd
dc.contributor.authorJolly, Shruti
dc.contributor.authorGabriel, Peter
dc.contributor.authorMayo, Charles S.
dc.contributor.authorThor, Maria
dc.contributor.authorCaissie, Amanda
dc.contributor.authorRao, Arvind
dc.contributor.authorOwen, Dawn
dc.contributor.authorSmith, Wade
dc.contributor.authorPalta, Jatinder
dc.contributor.authorKapoor, Rishabh
dc.contributor.authorHayman, James
dc.contributor.authorWaddle, Mark
dc.contributor.authorRosenstein, Barry
dc.contributor.authorMiller, Robert
dc.contributor.authorChoi, Seungtaek
dc.contributor.authorMoreno, Amy
dc.contributor.authorHerman, Joseph
dc.contributor.authorFeng, Mary
dc.date.accessioned2018-11-20T15:31:44Z
dc.date.available2019-12-02T14:55:09Zen
dc.date.issued2018-10
dc.identifier.citationMatuszak, Martha M.; Fuller, Clifton D.; Yock, Torunn I.; Hess, Clayton B.; McNutt, Todd; Jolly, Shruti; Gabriel, Peter; Mayo, Charles S.; Thor, Maria; Caissie, Amanda; Rao, Arvind; Owen, Dawn; Smith, Wade; Palta, Jatinder; Kapoor, Rishabh; Hayman, James; Waddle, Mark; Rosenstein, Barry; Miller, Robert; Choi, Seungtaek; Moreno, Amy; Herman, Joseph; Feng, Mary (2018). "Performance/outcomes data and physician process challenges for practical big data efforts in radiation oncology." Medical Physics 45(10): e811-e819.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/146290
dc.publisherWiley Periodicals, Inc.
dc.subject.otherchallenges
dc.subject.otherbig data
dc.subject.otheroutcomes
dc.subject.otherperformance
dc.subject.otherphysician
dc.subject.otherradiation oncology
dc.titlePerformance/outcomes data and physician process challenges for practical big data efforts in radiation oncology
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146290/1/mp13136.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146290/2/mp13136_am.pdf
dc.identifier.doi10.1002/mp.13136
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceDeist TM, Jochems A, Soest JV, et al. Infrastructure and distributed learning methodology for privacy‐preserving multi‐centric rapid learning health care: euroCAT. Clin Transl Radiat Oncol. 2017; 4: 24 – 31.
dc.identifier.citedreferenceMcNutt T, Wong J, Purdy J, Valicenti R, DeWeese T. OncoSpace: A New Paradigm for Clinical Research and Decision Support in Radiation Oncology Proceedings of the XVIth International Conference on the Use of Computers in Radiation Therapy, Amsterdam, 2010, Editor Jan‐Jakob Sonke, Published by Het Nederlands Kanker Instituut ‐ Antoni van Leeuwenhoek Ziekenhuis ISBN: 978‐90‐75575‐29‐3
dc.identifier.citedreferenceKazhdan M, Simari P, McNutt T, et al. A shape relationship descriptor for radiationtherapy planning. Med Image Comput Computer‐Assisted Intervention. 2009; 5762: 100 – 108.
dc.identifier.citedreferenceBinbin W, Ricchetti F, Sanguineti G, et al. Patient geometry‐driven information retrieval for IMRT treatment plan quality control. Med Phys. 2009 Dec; 36: 5497 – 5505.
dc.identifier.citedreferenceWu B, Ricchetti F, Sanguineti G, et al. Data‐driven approach to generating achievable dose‐volume histogram objectives in intensity modulated radiotherapy planning. Int J Radiat Oncol Biol Phys. 2011 Mar 15; 79: 1241 – 1247. Epub 2010 Aug.
dc.identifier.citedreferencePetit SF, Wu B, Kazhdan M, et al. Increased organ sparing using shape‐based treatment plan optimization for intensity modulated radiation therapy of pancreatic adenocarcinoma. Radiother Oncol. 2012; 102: 38 – 44.
dc.identifier.citedreferenceBinbin W, McNutt T, Zahurak M, et al. Fully automated simultaneous integrated boosted‐intensity modulated radiation therapy treatment planning is feasible for head‐and‐neck cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys. 2012; 84: e647 – e653.
dc.identifier.citedreferenceOwen J, White J, Zelefsky M, Wilson J. Using QRRO™ survey data to assess compliance with quality indicators for breast and prostate cancer. J Am Coll Radiol. 2009; 6: 442 – 447.
dc.identifier.citedreferenceCaruthers D, Brame S, Palta JR, et al. Development and implementation of quality measures for the survey based performance assessment of radiation therapy in the VHA. Int J Radiat Oncol Biol Phys. 2017; 99: E391 – E392.
dc.identifier.citedreferenceMcNutt T, Moore K, Quon H. Needs and challenges for big data in radiation oncology. Int J Radiat Oncol Biol Phys. 2015; 95: 909 – 915.
dc.identifier.citedreferenceMarungo F, Robertson S, Quon H, et al. Creating a data science platform for developing complication risk models for personalized treatment planning in radiation oncology. 48th Hawaii International Conference on System Sciences (HICSS). Kauai, HI USA: IEEE; 2015.
dc.identifier.citedreferenceRobertson S, Quon H, Kiess A, et al. A data‐mining framework for large scale analysis of dose‐outcome relationships in a database of irradiated head and neck (HN) Cancer Patients. Med Phys. 2015; 42: 4329.
dc.identifier.citedreferenceYang WY, Moore J, Quon H, et al. Browser based platform in maintaining clinical activities – use of the iPads in head and neck clinics. J Phys Conf Ser. 2014; 489:012095. Int’t Confernce on Computers in Radiotherapy, Melbourne AUS 2013
dc.identifier.citedreferenceMayo CS, Kessler ML, Eisbruch A, et al. The big data effort in radiation oncology: data mining or data farming? Adv Radiat Oncol. 2016; 1: 260 – 271.
dc.identifier.citedreferenceMayo C, Moran JM, Xiao Y, et al. AAPM Task Group 263: tackling standardization of nomenclature for radiation therapy. Int J Radiat Oncol Biol Phys. 2015; 93: E383 – E384.
dc.identifier.citedreferenceKasper HB, Raeke L, Indelicato DJ, et al. The pediatric proton consortium registry: a multi‐institutional collaboration in U.S. Proton centers. Int J Part Ther. 2014; 1: 323 – 333.
dc.identifier.citedreferencehttps://www.hl7.org/fhir/overview-arch.html.
dc.identifier.citedreferenceGaebel J, Cypko M, Lemke H. Accessing patient information for probabilistic patient models using existing standards. Proceedings of the 10th EHealth2016 Conference. 2016; 223: 107 – 112.
dc.identifier.citedreferenceSmith WP, Richard PJ, Zeng J, Apisarnthanarax S, Rengan R, Phillips MP. Decision analytic modeling for the economic analysis of proton radiotherapy for NSCLC. Trans Lung Cancer Res. 2018; 7: 122.
dc.identifier.citedreferenceReeve BB, Mitchell SA, Dueck AC, et al. Recommended patient‐reported core set of symptoms to measure in adult cancer treatment trials. J Natl Cancer Inst. 2014; 106: 1 – 8.
dc.identifier.citedreferencehttps://www.hl7.org/fhir/
dc.identifier.citedreferenceCooper BT, Formenti SC, Shin S, et al. Prospective randomized trial of prone accelerated intensity modulated breast radiation therapy with a daily versus weekly boost to the tumor bed. Int J Radiat Oncol Biol Phys. 2016; 95: 571 – 578.
dc.identifier.citedreferenceRaza S, Lymberis SC, et al. Comparison of acute and late toxicity of two regimens of 3‐ and 5‐Week concomitant boost prone IMRT to standard 6‐week breast radiotherapy. Front Oncol. 2012; 2: 44.
dc.identifier.citedreferenceFreedman GM, White JR, et al. Accelerated fractionation with a concurrent boost for early stage breast cancer. Radiother Oncol. 2013; 106: 15 – 20.
dc.identifier.citedreferenceFormenti SC, Gidea‐Addeo D, Goldberg JD, et al. Phase I‐II trial of prone accelerated intensity modulated radiation therapy to the breast to optimally spare normal tissue. J Clin Oncol. 2007; 25: 2236 – 2242.
dc.identifier.citedreferenceConstantine C, Parhar P, Lymberis S, et al. Feasibility of accelerated whole‐breast radiation in the treatment of patients with ductal carcinoma in situ of the breast. Clin Breast Cancer. 2008; 8: 269 – 274.
dc.identifier.citedreferenceWest C, Azria D, Chang‐Claude J, et al. The REQUITE project: validating predictive models and biomarkers of radiotherapy toxicity to reduce side‐effects and improve quality of life in cancer survivors. Clin Oncol (R Coll Radiol) 2014; 26: 739 – 742.
dc.identifier.citedreferenceWest C, Rosenstein BS. Establishment of a radiogenomics consortium. Radiother Oncol. 2010; 94: 117 – 118.
dc.identifier.citedreferenceRosenstein BS. Radiogenomics: identification of genomic predictors for radiation toxicity. Semin Radiat Oncol. 2017; 27: 300 – 309.
dc.identifier.citedreferenceWaddle MR, Kaleem T, Niazi SK, et al. Cost of acute and follow‐up care in patients with pre‐existing psychiatric diagnoses undergoing radiation therapy. IJROBP. 2017; 99: 1321.
dc.identifier.citedreferenceVisscher SL, Naessens JM, Yawn BP, Reinalda MS, Anderson SS, Borah BJ. Developing a standardized healthcare cost data warehouse. BMC Health Serv Res. 2017; 17: 396. https://doi.org/10.1186/s12913-017-2327-8
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.