Show simple item record

Inflammasome activation during spontaneous preterm labor with intraâ amniotic infection or sterile intraâ amniotic inflammation

dc.contributor.authorGomez‐lopez, Nardhy
dc.contributor.authorRomero, Roberto
dc.contributor.authorPanaitescu, Bogdan
dc.contributor.authorLeng, Yaozhu
dc.contributor.authorXu, Yi
dc.contributor.authorTarca, Adi L.
dc.contributor.authorFaro, Jonathan
dc.contributor.authorPacora, Percy
dc.contributor.authorHassan, Sonia S.
dc.contributor.authorHsu, Chaur‐dong
dc.date.accessioned2018-11-20T15:31:49Z
dc.date.available2020-01-06T16:40:59Zen
dc.date.issued2018-11
dc.identifier.citationGomez‐lopez, Nardhy ; Romero, Roberto; Panaitescu, Bogdan; Leng, Yaozhu; Xu, Yi; Tarca, Adi L.; Faro, Jonathan; Pacora, Percy; Hassan, Sonia S.; Hsu, Chaur‐dong (2018). "Inflammasome activation during spontaneous preterm labor with intraâ amniotic infection or sterile intraâ amniotic inflammation." American Journal of Reproductive Immunology 80(5): n/a-n/a.
dc.identifier.issn1046-7408
dc.identifier.issn1600-0897
dc.identifier.urihttps://hdl.handle.net/2027.42/146295
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier Saunders
dc.titleInflammasome activation during spontaneous preterm labor with intraâ amniotic infection or sterile intraâ amniotic inflammation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146295/1/aji13049.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/146295/2/aji13049_am.pdf
dc.identifier.doi10.1111/aji.13049
dc.identifier.sourceAmerican Journal of Reproductive Immunology
dc.identifier.citedreferenceRomero R, Sirtori M, Oyarzun E, et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol. 1989; 161: 817 â 824.
dc.identifier.citedreferenceAllen IC, Scull MA, Moore CB, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity. 2009; 30: 556 â 565.
dc.identifier.citedreferenceDuncan JA, Gao X, Huang MT, et al. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASCâ containing inflammasome. J Immunol. 2009; 182: 6460 â 6469.
dc.identifier.citedreferenceJoly S, Ma N, Sadler JJ, Soll DR, Cassel SL, Sutterwala FS. Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol. 2009; 183: 3578 â 3581.
dc.identifier.citedreferenceIchinohe T, Lee HK, Ogura Y, Flavell R, Iwasaki A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med. 2009; 206: 79 â 87.
dc.identifier.citedreferenceRathinam VA, Vanaja SK, Waggoner L, et al. TRIF licenses caspaseâ 11â dependent NLRP3 inflammasome activation by gramâ negative bacteria. Cell. 2012; 150: 606 â 619.
dc.identifier.citedreferenceClay GM, Sutterwala FS, Wilson ME. NLR proteins and parasitic disease. Immunol Res. 2014; 59: 142 â 152.
dc.identifier.citedreferenceMartinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Goutâ associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006; 440: 237 â 241.
dc.identifier.citedreferenceMariathasan S, Weiss DS, Newton K, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006; 440: 228 â 232.
dc.identifier.citedreferenceHornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008; 9: 847 â 856.
dc.identifier.citedreferenceDostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008; 320: 674 â 677.
dc.identifier.citedreferenceCassel SL, Eisenbarth SC, Iyer SS, et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A. 2008; 105: 9035 â 9040.
dc.identifier.citedreferenceYamasaki K, Muto J, Taylor KR, et al. NLRP3/cryopyrin is necessary for interleukinâ 1beta (ILâ 1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem. 2009; 284: 12762 â 12771.
dc.identifier.citedreferenceCassel SL, Joly S, Sutterwala FS. The NLRP3 inflammasome: a sensor of immune danger signals. Semin Immunol. 2009; 21: 194 â 198.
dc.identifier.citedreferenceCassel SL, Sutterwala FS. Sterile inflammatory responses mediated by the NLRP3 inflammasome. Eur J Immunol. 2010; 40: 607 â 611.
dc.identifier.citedreferenceLeemans JC, Cassel SL, Sutterwala FS. Sensing damage by the NLRP3 inflammasome. Immunol Rev. 2011; 243: 152 â 162.
dc.identifier.citedreferenceBezbradica JS, Coll RC, Schroder K. Sterile signals generate weaker and delayed macrophage NLRP3 inflammasome responses relative to microbial signals. Cell Mol Immunol. 2017; 14: 118 â 126.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Plazyo O, et al. Preterm labor in the absence of acute histologic chorioamnionitis is characterized by cellular senescence of the chorioamniotic membranes. Am J Obstet Gynecol. 2017; 217: 592. e591â 592 e517.
dc.identifier.citedreferenceYao Y, Chen S, Cao M, et al. Antigenâ specific CD8(+) T cell feedback activates NLRP3 inflammasome in antigenâ presenting cells through perforin. Nat Commun. 2017; 8: 15402.
dc.identifier.citedreferenceGomezâ Lopez N, Vegaâ Sanchez R, Castilloâ Castrejon M, Romero R, Cubeiroâ Arreola K, Vadilloâ Ortega F. Evidence for a role for the adaptive immune response in human term parturition. Am J Reprod Immunol. 2013; 69: 212 â 230.
dc.identifier.citedreferenceKim CJ, Romero R, Chaemsaithong P, Kim JS. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance. Am J Obstet Gynecol. 2015; 213: S53 â S69.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Arenasâ Hernandez M, et al. In vivo Tâ cell activation by a monoclonal alphaCD3epsilon antibody induces preterm labor and birth. Am J Reprod Immunol. 2016; 76: 386 â 390.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Arenasâ Hernandez M, et al. In vivo activation of invariant natural killer T cells induces systemic and local alterations in Tâ cell subsets prior to preterm birth. Clin Exp Immunol. 2017; 189: 211 â 225.
dc.identifier.citedreferenceFrascoli M, Coniglio L, Witt R, et al. Alloreactive fetal T cells promote uterine contractility in preterm labor via IFNâ gamma and TNFâ alpha. Sci Transl Med. 2018; 10.
dc.identifier.citedreferenceBlencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012; 379: 2162 â 2172.
dc.identifier.citedreferenceLiu L, Oza S, Hogan D, et al. Global, regional, and national causes of child mortality in 2000â 13, with projections to inform postâ 2015 priorities: An updated systematic analysis. Lancet. 2015; 385: 430 â 440.
dc.identifier.citedreferenceManuck TA, Rice MM, Bailit JL, et al. Eunice Kennedy Shriver National Institute of Child H, Human Development Maternalâ Fetal Medicine Units N: Preterm neonatal morbidity and mortality by gestational age: A contemporary cohort. Am J Obstet Gynecol. 2016; 215: 103 e101â 103 e114.
dc.identifier.citedreferenceRomero R, Mazor M, Munoz H, Gomez R, Galasso M, Sherer DM. The preterm labor syndrome. Ann N Y Acad Sci. 1994; 734: 414 â 429.
dc.identifier.citedreferenceBerkowitz GS, Blackmoreâ Prince C, Lapinski RH, Savitz DA. Risk factors for preterm birth subtypes. Epidemiology. 1998; 9: 279 â 285.
dc.identifier.citedreferenceGoldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008; 371: 75 â 84.
dc.identifier.citedreferenceMuglia LJ, Katz M. The enigma of spontaneous preterm birth. N Engl J Med. 2010; 362: 529 â 535.
dc.identifier.citedreferenceRomero R, Mazor M, Wu YK, et al. Infection in the pathogenesis of preterm labor. Semin Perinatol. 1988; 12: 262 â 279.
dc.identifier.citedreferenceGomez R, Romero R, Edwin SS, David C. Pathogenesis of preterm labor and preterm premature rupture of membranes associated with intraamniotic infection. Infect Dis Clin North Am. 1997; 11: 135 â 176.
dc.identifier.citedreferenceRomero R, Gotsch F, Pineles B, Kusanovic JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev. 2007; 65: S194 â S202.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intraâ amniotic infection in preterm labor with intact membranes. Am J Reprod Immunol. 2014; 71: 330 â 358.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. Prevalence and clinical significance of sterile intraâ amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014; 72: 458 â 474.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. Sterile intraâ amniotic inflammation in asymptomatic patients with a sonographic short cervix: prevalence and clinical significance. J Matern Fetal Neonatal Med. 2014; 24: 1 â 17.
dc.identifier.citedreferenceRomero R, Miranda J, Chaemsaithong P, et al. Sterile and microbialâ associated intraâ amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015; 28: 1394 â 1409.
dc.identifier.citedreferenceRomero R, Miranda J, Kusanovic JP, et al. Clinical chorioamnionitis at term I: microbiology of the amniotic cavity using cultivation and molecular techniques. J Perinat Med. 2015; 43: 19 â 36.
dc.identifier.citedreferenceRomero R, Chaemsaithong P, Korzeniewski SJ, et al. Clinical chorioamnionitis at term II: the intraâ amniotic inflammatory response. J Perinat Med. 2016; 44: 5 â 22.
dc.identifier.citedreferenceRomero R, Chaemsaithong P, Korzeniewski SJ, et al. Clinical chorioamnionitis at term III: how well do clinical criteria perform in the identification of proven intraâ amniotic infection? J Perinat Med. 2016; 44: 23 â 32.
dc.identifier.citedreferenceRomero R, Chaemsaithong P, Docheva N, et al. Clinical chorioamnionitis at term IV: the maternal plasma cytokine profile. J Perinat Med. 2016; 44: 77 â 98.
dc.identifier.citedreferenceRomero R, Chaemsaithong P, Docheva N, et al. Clinical chorioamnionitis at term V: umbilical cord plasma cytokine profile in the context of a systemic maternal inflammatory response. J Perinat Med. 2016; 44: 53 â 76.
dc.identifier.citedreferenceRomero R, Chaemsaithong P, Docheva N, et al. Clinical chorioamnionitis at term VI: acute chorioamnionitis and funisitis according to the presence or absence of microorganisms and inflammation in the amniotic cavity. J Perinat Med. 2016; 44: 33 â 51.
dc.identifier.citedreferenceRubartelli A, Lotze MT. Inside, outside, upside down: damageâ associated molecularâ pattern molecules (DAMPs) and redox. Trends Immunol. 2007; 28: 429 â 436.
dc.identifier.citedreferenceLotze MT, Zeh HJ, Rubartelli A, et al. The grateful dead: damageâ associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev. 2007; 220: 60 â 81.
dc.identifier.citedreferenceOppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol. 2005; 17: 359 â 365.
dc.identifier.citedreferenceRomero R, Brody DT, Oyarzun E, et al. Infection and labor. III. Interleukinâ 1: a signal for the onset of parturition. Am J Obstet Gynecol. 1989; 160: 1117 â 1123.
dc.identifier.citedreferenceRomero R, Mazor M, Brandt F, et al. Interleukinâ 1 alpha and interleukinâ 1 beta in preterm and term human parturition. Am J Reprod Immunol. 1992; 27: 117 â 123.
dc.identifier.citedreferenceFriel LA, Romero R, Edwin S, et al. The calcium binding protein, S100B, is increased in the amniotic fluid of women with intraâ amniotic infection/inflammation and preterm labor with intact or ruptured membranes. J Perinat Med. 2007; 35: 385 â 393.
dc.identifier.citedreferenceChaiworapongsa T, Erez O, Kusanovic JP, et al. Amniotic fluid heat shock protein 70 concentration in histologic chorioamnionitis, term and preterm parturition. J Matern Fetal Neonatal Med. 2008; 21: 449 â 461.
dc.identifier.citedreferenceRomero R, Chaiworapongsa T, Alpay Savasan Z, et al. Damageâ associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. J Matern Fetal Neonatal Med. 2011; 24: 1444 â 1455.
dc.identifier.citedreferenceRomero R, Chaiworapongsa T, Savasan ZA, et al. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J Matern Fetal Neonatal Med. 2012; 25: 558 â 567.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Plazyo O, et al. Intraâ amniotic administration of HMGB1 induces spontaneous preterm labor and birth. Am J Reprod Immunol. 2016; 75: 3 â 7.
dc.identifier.citedreferencePlazyo O, Romero R, Unkel R, et al. HMGB1 induces an inflammatory response in the chorioamniotic membranes that is partially mediated by the inflammasome. Biol Reprod. 2016; 95: 130.
dc.identifier.citedreferenceGotsch F, Romero R, Chaiworapongsa T, et al. Evidence of the involvement of caspaseâ 1 under physiologic and pathologic cellular stress during human pregnancy: a link between the inflammasome and parturition. J Matern Fetal Neonatal Med. 2008; 21: 605 â 616.
dc.identifier.citedreferenceJaiswal MK, Agrawal V, Mallers T, Gilmanâ Sachs A, Hirsch E, Beaman KD. Regulation of apoptosis and innate immune stimuli in inflammationâ induced preterm labor. J Immunol. 2013; 191: 5702 â 5713.
dc.identifier.citedreferenceBrickle A, Tran HT, Lim R, Liong S, Lappas M. Autophagy, which is decreased in labouring fetal membranes, regulates ILâ 1beta production via the inflammasome. Placenta. 2015; 36: 1393 â 1404.
dc.identifier.citedreferenceModi BP, Teves ME, Pearson LN, et al. Mutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM). Mol Genet Genomic Med. 2017; 5: 720 â 729.
dc.identifier.citedreferenceCross SN, Potter JA, Aldo P, et al. Viral infection sensitizes human fetal membranes to bacterial lipopolysaccharide by MERTK inhibition and inflammasome activation. J Immunol. 2017; 199: 2885 â 2895.
dc.identifier.citedreferenceStrauss JF 3rd, Romero R, Gomezâ Lopez N, et al. Spontaneous preterm birth: advances toward the discovery of genetic predisposition. Am J Obstet Gynecol. 2018; 218 ( 294â 314 ): e292.
dc.identifier.citedreferenceLim R, Lappas M. NODâ like receptor pyrin domainâ containingâ 3 (NLRP3) regulates inflammationâ induced proâ labor mediators in human myometrial cells. Am J Reprod Immunol. 2018; 79: e12825.
dc.identifier.citedreferenceMartinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proILâ beta. Mol Cell. 2002; 10: 417 â 426.
dc.identifier.citedreferencePetrilli V, Papin S, Tschopp J. The inflammasome. Curr Biol. 2005; 15: R581.
dc.identifier.citedreferenceOgura Y, Sutterwala FS, Flavell RA. The inflammasome: first line of the immune response to cell stress. Cell. 2006; 126: 659 â 662.
dc.identifier.citedreferenceSharma D, Kanneganti TD. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol. 2016; 213: 617 â 629.
dc.identifier.citedreferenceSutterwala FS, Ogura Y, Flavell RA. The inflammasome in pathogen recognition and inflammation. J Leukoc Biol. 2007; 82: 259 â 264.
dc.identifier.citedreferenceMariathasan S, Monack DM. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol. 2007; 7: 31 â 40.
dc.identifier.citedreferenceFranchi L, Eigenbrod T, Munozâ Planillo R, Nunez G. The inflammasome: a caspaseâ 1â activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009; 10: 241 â 247.
dc.identifier.citedreferenceJha S, Ting JP. Inflammasomeâ associated nucleotideâ binding domain, leucineâ rich repeat proteins and inflammatory diseases. J Immunol. 2009; 183: 7623 â 7629.
dc.identifier.citedreferenceLatz E. The inflammasomes: mechanisms of activation and function. Curr Opin Immunol. 2010; 22: 28 â 33.
dc.identifier.citedreferenceSchroder K, Tschopp J. The inflammasomes. Cell. 2010; 140: 821 â 832.
dc.identifier.citedreferenceFranchi L, Munozâ Planillo R, Reimer T, Eigenbrod T, Nunez G. Inflammasomes as microbial sensors. Eur J Immunol. 2010; 40: 611 â 615.
dc.identifier.citedreferenceLamkanfi M, Dixit VM. Modulation of inflammasome pathways by bacterial and viral pathogens. J Immunol. 2011; 187: 597 â 602.
dc.identifier.citedreferenceHorvath GL, Schrum JE, De Nardo CM, Latz E. Intracellular sensing of microbes and danger signals by the inflammasomes. Immunol Rev. 2011; 243: 119 â 135.
dc.identifier.citedreferenceFranchi L, Munozâ Planillo R, Nunez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol. 2012; 13: 325 â 332.
dc.identifier.citedreferenceRathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling. Nat Immunol. 2012; 13: 333 â 342.
dc.identifier.citedreferenceFranchi L, Nunez G. Immunology. Orchestrating inflammasomes. Science. 2012; 337: 1299 â 1300.
dc.identifier.citedreferenceLatz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013; 13: 397 â 411.
dc.identifier.citedreferenceVanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 2015; 25: 308 â 315.
dc.identifier.citedreferenceGuo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015; 21: 677 â 687.
dc.identifier.citedreferenceBlack RA, Kronheim SR, Merriam JE, March CJ, Hopp TP. A preâ aspartateâ specific protease from human leukocytes that cleaves proâ interleukinâ 1 beta. J Biol Chem. 1989; 264: 5323 â 5326.
dc.identifier.citedreferenceKostura MJ, Tocci MJ, Limjuco G, et al. Identification of a monocyte specific preâ interleukin 1 beta convertase activity. Proc Natl Acad Sci U S A. 1989; 86: 5227 â 5231.
dc.identifier.citedreferenceThornberry NA, Bull HG, Calaycay JR, et al., et al. A novel heterodimeric cysteine protease is required for interleukinâ 1 beta processing in monocytes. Nature. 1992; 356: 768 â 774.
dc.identifier.citedreferenceCerretti DP, Kozlosky CJ, Mosley B, et al., et al. Molecular cloning of the interleukinâ 1 beta converting enzyme. Science. 1992; 256: 97 â 100.
dc.identifier.citedreferenceGu Y, Kuida K, Tsutsui H, et al. Activation of interferonâ gamma inducing factor mediated by interleukinâ 1beta converting enzyme. Science. 1997; 275: 206 â 209.
dc.identifier.citedreferenceGhayur T, Banerjee S, Hugunin M, et al. Caspaseâ 1 processes IFNâ gammaâ inducing factor and regulates LPSâ induced IFNâ gamma production. Nature. 1997; 386: 619 â 623.
dc.identifier.citedreferenceDinarello CA. Interleukinâ 1 beta, interleukinâ 18, and the interleukinâ 1 beta converting enzyme. Ann N Y Acad Sci. 1998; 856: 1 â 11.
dc.identifier.citedreferenceFantuzzi G, Dinarello CA. Interleukinâ 18 and interleukinâ 1 beta: two cytokine substrates for ICE (caspaseâ 1). J Clin Immunol. 1999; 19: 1 â 11.
dc.identifier.citedreferenceSansonetti PJ, Phalipon A, Arondel J, et al. Caspaseâ 1 activation of ILâ 1beta and ILâ 18 are essential for Shigella flexneriâ induced inflammation. Immunity. 2000; 12: 581 â 590.
dc.identifier.citedreferenceKahlenberg JM, Lundberg KC, Kertesy SB, Qu Y, Dubyak GR. Potentiation of caspaseâ 1 activation by the P2X7 receptor is dependent on TLR signals and requires NFâ kappaBâ driven protein synthesis. J Immunol. 2005; 175: 7611 â 7622.
dc.identifier.citedreferenceNetea MG, van de Veerdonk FL, van der Meer JW, Dinarello CA, Joosten LA. Inflammasomeâ independent regulation of ILâ 1â family cytokines. Annu Rev Immunol. 2015; 33: 49 â 77.
dc.identifier.citedreferenceCookson BT, Brennan MA. Proâ inflammatory programmed cell death. Trends Microbiol. 2001; 9: 113 â 114.
dc.identifier.citedreferenceMiao EA, Rajan JV, Aderem A. Caspaseâ 1â induced pyroptotic cell death. Immunol Rev. 2011; 243: 206 â 214.
dc.identifier.citedreferenceShalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015; 22: 526 â 539.
dc.identifier.citedreferenceFernandesâ Alnemri T, Wu J, Yu JW, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspaseâ 1 activation. Cell Death Differ. 2007; 14: 1590 â 1604.
dc.identifier.citedreferenceVajjhala PR, Mirams RE, Hill JM. Multiple binding sites on the pyrin domain of ASC protein allow selfâ association and interaction with NLRP3 protein. J Biol Chem. 2012; 287: 41732 â 41743.
dc.identifier.citedreferenceBarojaâ Mazo A, Martinâ Sanchez F, Gomez AI, et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol. 2014; 15: 738 â 748.
dc.identifier.citedreferenceFranklin BS, Bossaller L, De Nardo D, et al. The adaptor ASC has extracellular and â prionoidâ activities that propagate inflammation. Nat Immunol. 2014; 15: 727 â 737.
dc.identifier.citedreferenceStutz A, Horvath GL, Monks BG, Latz E. ASC speck formation as a readout for inflammasome activation. Methods Mol Biol. 2013; 1040: 91 â 101.
dc.identifier.citedreferenceRomero R, Xu Y, Plazyo O, et al. A role for the inflammasome in spontaneous labor at term. Am J Reprod Immunol. 2018; 79: e12440.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. Inflammasome assembly in the chorioamniotic membranes during spontaneous labor at term. Am J Reprod Immunol. 2017; 77.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. A role for the inflammasome in spontaneous labor at term with acute histologic chorioamnionitis. Reprod Sci. 2017; 24: 934 â 953.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. A role for the inflammasome in spontaneous preterm labor with acute histologic chorioamnionitis. Reprod Sci. 2017; 24: 1382 â 1401.
dc.identifier.citedreferencePanaitescu B, Romero R, Gomezâ Lopez N, et al. In vivo evidence of inflammasome activation during spontaneous labor at term. J Matern Fetal Neonatal Med. 2018; 17: 1 â 14.
dc.identifier.citedreferenceCombs CA, Gravett M, Garite TJ, et al. ProteoGenix/Obstetrix Collaborative Research N: Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol. 2014; 210: 125 e121â 125 e115.
dc.identifier.citedreferenceRomero R, Grivel JC, Tarca AL, et al. Evidence of perturbations of the cytokine network in preterm labor. Am J Obstet Gynecol. 2015; 213: 836 e831â 836 e818.
dc.identifier.citedreferenceDiGiulio DB, Romero R, Amogan HP, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and cultureâ based investigation. PLoS ONE. 2008; 3: e3056.
dc.identifier.citedreferenceDiGiulio DB, Romero R, Kusanovic JP, et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm preâ labor rupture of membranes. Am J Reprod Immunol. 2010; 64: 38 â 57.
dc.identifier.citedreferenceDiGiulio DB, Gervasi M, Romero R, et al. Microbial invasion of the amniotic cavity in preeclampsia as assessed by cultivation and sequenceâ based methods. J Perinat Med. 2010; 38: 503 â 513.
dc.identifier.citedreferenceDiGiulio DB, Gervasi MT, Romero R, et al. Microbial invasion of the amniotic cavity in pregnancies with smallâ forâ gestationalâ age fetuses. J Perinat Med. 2010; 38: 495 â 502.
dc.identifier.citedreferenceYoon BH, Romero R, Moon JB, et al. Clinical significance of intraâ amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2001; 185: 1130 â 1136.
dc.identifier.citedreferenceMenu P, Vince JE. The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol. 2011; 166: 1 â 15.
dc.identifier.citedreferenceChaemsaithong P, Romero R, Korzeniewski SJ, et al. A rapid interleukinâ 6 bedside test for the identification of intraâ amniotic inflammation in preterm labor with intact membranes. J Matern Fetal Neonatal Med. 2016; 29: 349 â 359.
dc.identifier.citedreferenceChaemsaithong P, Romero R, Korzeniewski SJ, et al. A point of care test for interleukinâ 6 in amniotic fluid in preterm prelabor rupture of membranes: a step toward the early treatment of acute intraâ amniotic inflammation/infection. J Matern Fetal Neonatal Med. 2016; 29: 360 â 367.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. Are amniotic fluid neutrophils in women with intraamniotic infection and/or inflammation of fetal or maternal origin? Am J Obstet Gynecol. 2017; 217: 693. e1â 693.e16.
dc.identifier.citedreferencePacora P, Romero R, Erez O, et al. The diagnostic performance of the betaâ glucan assay in the detection of intraâ amniotic infection with Candida species. J Matern Fetal Neonatal Med. 2017; 27: 1 â 18.
dc.identifier.citedreferenceMusilova I, Bestvina T, Hudeckova M, et al. Vaginal fluid ILâ 6 concentrations as a pointâ ofâ care test is of value in women with preterm PROM. Am J Obstet Gynecol. 2016. [Epub ahead of print].
dc.identifier.citedreferenceMusilova I, Bestvina T, Hudeckova M, et al. Vaginal fluid interleukinâ 6 concentrations as a pointâ ofâ care test is of value in women with preterm prelabor rupture of membranes. Am J Obstet Gynecol. 2016; 215: 619. e1â 619.e12.
dc.identifier.citedreferenceRomero R, Quintero R, Nores J, et al. Amniotic fluid white blood cell count: a rapid and simple test to diagnose microbial invasion of the amniotic cavity and predict preterm delivery. Am J Obstet Gynecol. 1991; 165: 821 â 830.
dc.identifier.citedreferenceRomero R, Jimenez C, Lohda AK, et al. Amniotic fluid glucose concentration: a rapid and simple method for the detection of intraamniotic infection in preterm labor. Am J Obstet Gynecol. 1990; 163: 968 â 974.
dc.identifier.citedreferenceRomero R, Emamian M, Quintero R, et al. The value and limitations of the Gram stain examination in the diagnosis of intraamniotic infection. Am J Obstet Gynecol. 1988; 159: 114 â 119.
dc.identifier.citedreferenceKim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015; 213: S29 â S52.
dc.identifier.citedreferenceRedline RW, Fayeâ Petersen O, Heller D, Qureshi F, Savell V, Vogler C. Society for pediatric pathology PSAFINC: amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2003; 6: 435 â 448.
dc.identifier.citedreferenceRedline RW. Inflammatory responses in the placenta and umbilical cord. Semin Fetal Neonatal Med. 2006; 11: 296 â 301.
dc.identifier.citedreferenceRedline RW. Classification of placental lesions. Am J Obstet Gynecol. 2015; 213: S21 â S28.
dc.identifier.citedreferenceKhong TY, Mooney EE, Ariel I, et al. Sampling and definitions of placental lesions: Amsterdam placental workshop group consensus statement. Arch Pathol Lab Med. 2016; 140: 698 â 713.
dc.identifier.citedreferenceRomero R, Kim YM, Pacora P, et al. The frequency and type of placental histologic lesions in term pregnancies with normal outcome. J Perinat Med. 2018; 46: 613 â 630.
dc.identifier.citedreferenceRomero R, Chaemsaithong P, Chaiyasit N, et al. CXCL10 and ILâ 6: Markers of two different forms of intraâ amniotic inflammation in preterm labor. Am J Reprod Immunol. 2017; 78: 1 â 17.
dc.identifier.citedreferencePacora P, Romero R, Maymon E, et al. Participation of the novel cytokine interleukin 18 in the host response to intraâ amniotic infection. Am J Obstet Gynecol. 2000; 183: 1138 â 1143.
dc.identifier.citedreferenceBlanc WA. Amniotic infection syndrome; pathogenesis, morphology, and significance in circumnatal mortality. Clin Obstet Gynecol. 1959; 2: 705 â 734.
dc.identifier.citedreferenceRussell P. Inflammatory lesions of the human placenta: Clinical significance of acute chorioamnionitis. Am J Diagn Gynecol Obstet. 1979; 2: 127 â 137.
dc.identifier.citedreferenceBlanc WA. Pathology of the placenta and cord in ascending and in haematogenous infection. Ciba Found Symp. 1979; 77: 17 â 38.
dc.identifier.citedreferenceHillier SL, Martius J, Krohn M, Kiviat N, Holmes KK, Eschenbach DA. A caseâ control study of chorioamnionic infection and histologic chorioamnionitis in prematurity. N Engl J Med. 1988; 319: 972 â 978.
dc.identifier.citedreferenceHillier SL, Krohn MA, Kiviat NB, Watts DH, Eschenbach DA. Microbiologic causes and neonatal outcomes associated with chorioamnion infection. Am J Obstet Gynecol. 1991; 165: 955 â 961.
dc.identifier.citedreferenceRomero R, Salafia CM, Athanassiadis AP, et al. The relationship between acute inflammatory lesions of the preterm placenta and amniotic fluid microbiology. Am J Obstet Gynecol. 1992; 166: 1382 â 1388.
dc.identifier.citedreferenceRedline RW. Placental inflammation. Semin Neonatol. 2004; 9: 265 â 274.
dc.identifier.citedreferenceFox H, Sebire NJ. Infections and Inflammatory Lesions of the Placenta, In Pathology of the Placenta. 3rd edn. Edinburgh, UK: Elsevier Saunders; 2007: 303 â 354.
dc.identifier.citedreferenceBenirschke K, Burton G, Baergen R. Infectious Diseases. In Pathology of the Human Placenta. Berlin Heidelberg: Springer; 2012: 557 â 655.
dc.identifier.citedreferenceAnders AP, Gaddy JA, Doster RS, Aronoff DM. Current concepts in maternalâ fetal immunology: Recognition and response to microbial pathogens by decidual stromal cells. Am J Reprod Immunol. 2017; 77.
dc.identifier.citedreferenceLappas M. Caspaseâ 1 activation is increased with human labour in foetal membranes and myometrium and mediates infectionâ induced interleukinâ 1beta secretion. Am J Reprod Immunol. 2014; 71: 189 â 201.
dc.identifier.citedreferenceGibbs RS, Blanco JD, St Clair PJ, Castaneda YS. Quantitative bacteriology of amniotic fluid from women with clinical intraamniotic infection at term. J Infect Dis. 1982; 145: 1 â 8.
dc.identifier.citedreferenceMoutquin JM. Classification and heterogeneity of preterm birth. BJOG. 2003; 110 ( Suppl 20 ): 30 â 33.
dc.identifier.citedreferenceYoneda N, Yoneda S, Niimi H, et al. Polymicrobial amniotic fluid infection with mycoplasma/ureaplasma and other bacteria induces severe intraâ amniotic inflammation associated with poor perinatal prognosis in preterm labor. Am J Reprod Immunol. 2016; 75: 112 â 125.
dc.identifier.citedreferenceCox C, Saxena N, Watt AP, et al. The common vaginal commensal bacterium Ureaplasma parvum is associated with chorioamnionitis in extreme preterm labor. J Matern Fetal Neonatal Med. 2016; 29: 3646 â 3651.
dc.identifier.citedreferenceOh KJ, Kim SM, Hong JS, et al. Twentyâ four percent of patients with clinical chorioamnionitis in preterm gestations have no evidence of either cultureâ proven intraamniotic infection or intraamniotic inflammation. Am J Obstet Gynecol. 2017; 216: 604.e601â 604.e611.
dc.identifier.citedreferenceOh KJ, Hong JS, Romero R, Yoon BH. The frequency and clinical significance of intraâ amniotic inflammation in twin pregnancies with preterm labor and intact membranes. J Matern Fetal Neonatal Med. 2017; 1 â 15. [Epub ahead of print].
dc.identifier.citedreferenceMarques LM, Rezende IS, Barbosa MS, et al. Ureaplasma diversum genome provides new insights about the interaction of the surface molecules of this bacterium with the host. PLoS ONE. 2016; 11: e0161926.
dc.identifier.citedreferenceMartinezâ Varea A, Romero R, Xu Y, et al. Clinical chorioamnionitis at term VII: the amniotic fluid cellular immune response. J Perinat Med. 2017; 45: 523 â 538.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Garciaâ Flores V, et al. Amniotic fluid neutrophils can phagocytize bacteria: A mechanism for microbial killing in the amniotic cavity. Am J Reprod Immunol. 2017; 78.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. Neutrophil extracellular traps in the amniotic cavity of women with intraâ amniotic infection: a new mechanism of host defense. Reprod Sci. 2017; 24: 1139 â 1153.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Xu Y, et al. The immunophenotype of amniotic fluid leukocytes in normal and complicated pregnancies. Am J Reprod Immunol. 2018; 79: e12827.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Leng Y, et al. Neutrophil extracellular traps in acute chorioamnionitis: a mechanism of host defense. Am J Reprod Immunol. 2017; 77.
dc.identifier.citedreferenceDi Paolo NC, Shayakhmetov DM. Interleukin 1alpha and the inflammatory process. Nat Immunol. 2016; 17: 906 â 913.
dc.identifier.citedreferenceRomero R, Mazor M, Tartakovsky B. Systemic administration of interleukinâ 1 induces preterm parturition in mice. Am J Obstet Gynecol. 1991; 165: 969 â 971.
dc.identifier.citedreferenceRomero R, Tartakovsky B. The natural interleukinâ 1 receptor antagonist prevents interleukinâ 1â induced preterm delivery in mice. Am J Obstet Gynecol. 1992; 167: 1041 â 1045.
dc.identifier.citedreferenceHarris HE, Raucci A. Alarmin(g) news about danger: workshop on innate danger signals and HMGB1. EMBO Rep. 2006; 7: 774 â 778.
dc.identifier.citedreferenceWang H, Bloom O, Zhang M, et al. HMGâ 1 as a late mediator of endotoxin lethality in mice. Science. 1999; 285: 248 â 251.
dc.identifier.citedreferenceKanneganti TD, Bodyâ Malapel M, Amer A, et al. Critical role for Cryopyrin/Nalp3 in activation of caspaseâ 1 in response to viral infection and doubleâ stranded RNA. J Biol Chem. 2006; 281: 36560 â 36568.
dc.identifier.citedreferenceKoo IC, Wang C, Raghavan S, Morisaki JH, Cox JS, Brown EJ. ESXâ 1â dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell Microbiol. 2008; 10: 1866 â 1878.
dc.identifier.citedreferenceMuruve DA, Petrilli V, Zaiss AK, et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature. 2008; 452: 103 â 107.
dc.identifier.citedreferenceThomas PG, Dash P, Aldridge JR Jr, et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspaseâ 1. Immunity. 2009; 30: 566 â 575.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.